

EE300Ex Series

HUMIDITY / TEMPERATURE TRANSMITTER

For Intrinsically Safe Applications

Operating instructions

The operating instructions form part of the equipment supplied and are used to ensure optimal operation and functioning of the device.

E+E Elektronik® Ges.m.b.H. provides no warranty of any kind on this publication and no liability for improper use of the products described.

To ensure perfect functioning, these operating instructions must be read carefully and observed before the transmitter is commissioned. These instructions must be provided to all persons responsible for mounting, commissioning, operation, inspection, maintenance and repair.

These operating instructions must not be used for the purposes of competition without our written permission and must not be forwarded to third parties. Copies may be made for internal purposes. All information, technical data and technical diagrams included in these instructions were correct in accordance with the data available at the time of writing.

The company E+E Elektronik GmbH reserves the right to make modifications at any time and without prior notification, with no update requirement on models produced before the modification date. For this reason, we request that you contact our customer service department, quoting the device number, designation and type given on the nameplate.

© Copyright E+E Elektronik Ges.m.b.H. All rights reserved.

EMC note USA (FCC):

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

Contents

1.	GENERAL NOTES 1.1 Explanation of symbols 1.2 Safety instructions	4 4 4
	1.2.1 General safety instructions1.3 Environmental aspects	4 4
2.	TECHNICAL DESCRIPTION 2.1 General 2.2 EE300Ex labeling 2.3 Certification 2.4 Housing and probe dimensions 2.5 Humidity probe working range 2.6 Dewpoint measurement in natural gas 2.7 Measurement of moisture in oil	5 5 6 7 12 13 13
3.	 INSTALLATION IN AN EXPLOSION HAZARD AREA 3.1 General 3.2 Housing assembly 3.2.1 Drilling plan for the housing 3.3 Assembly in category 1 (zone 0 / 20); Division 1 3.4 Assembly in categories 2 and 3 (Zone 1 2 / 21 22), Division 2 3.5 Mounting the measurement sensor 3.5.1 Mounting the clamping ring screw connection 3.5.2 Mounting with mounting flange (optional) 3.5.3 Mounting the probe using sensor retraction tool (optional) 3.5.4 Mounting the probe using sensor retraction tool (optional) 3.6 Calculation of the maximum cable length 3.7 Selecting a suitable power supply device for ATEX Zone concept: 	14 14 15 15 16 17 18 18 19 20 21 22
4.	ELECTRICAL CONNECTIONS 4.1 Connecting cable 4.2 Terminal assignment EE300Ex 4.3 Configuration adapter 4.4 Calibration of the current loop 4.5 Grounding and potential equalization	24 24 25 25 25 26
5.	DISPLAY (OPTIONAL)	27
6.	 MAINTENANCE 6.1 Filter replacement 6.2 Cleaning 6.2.1 Cleaning the display 6.2.2 Cleaning the sensor 6.3 Customer adjustment of humidity and temperature 6.4 Display error messages 6.5 Ordering information for accessories 	28 28 28 28 28 28 28 28
7.	TECHNICAL DATA - EE300EX-HT	29
8.	TECHNICAL DATA - EE300EX-xT	30
9.	ATEX CERTIFICATE	31
10.	EC DECLARATION OF CONFORMITY	36
11.	IECEX CERTIFICATE OF CONFORMITY - COC	37
12.	FM CERTIFICATE USA	38
13.	FM CERTIFICATE CANADA	45
14.	CONTROL DRAWING M1_1309080	52
15.	CERTIFICATES CHINA, KOREA AND JAPAN	55

1. GENERAL NOTES

1.1 Explanation of symbols

This symbol indicates safety information.

It is essential that this safety information is followed. The manufacturer accepts no liability in the case of contravention. The risk is borne solely by the user.

This symbol indicates an instruction.

These instructions should be observed to achieve optimum functioning of the device.

This symbol indicates regulations that must be observed in hazardous areas at risk of explosion.

1.2 Safety instructions

1.2.1 General safety instructions

In the event of **improper** or **incorrect** use of the device, the following risks occur:

- · Hazards for the device and other assets of the user as well as
- · Hazards that impair the efficient working of the device.

The following instructions should be observed to ensure personal safety:

- Only qualified or specially trained personnel should be permitted to work on or operate the device.
- These operating instructions must always be available to all persons carrying out mounting, commissioning, operation and servicing.
- It is essential that the device is only operated when in perfect operating condition.
- Any faults determined must be rectified immediately by specialist personnel or by E+E Elektronik customer services.
- No technical modifications to the device are permitted.
- Take care when unscrewing the filter cap as the sensor element may be damaged in the process.
- The sensor element is an ESD-sensitive component, i.e. ESD safety measures must be observed when touching the sensor element.
- · Only touch sensors on the connecting wires.
- The devices are designed for operation on safety extra-low voltage (safety class III).

1.3 Environmental aspects

Products from E+E Elektronik® are developed incorporating all important environmental aspects. For this reason, avoiding environmental contamination should also be observed during disposal as well.

On disposal of the transmitter, the individual components must be separated by type.

The electronics must be collected in electronics waste and disposed of correctly.

2. TECHNICAL DESCRIPTION

2.1 General

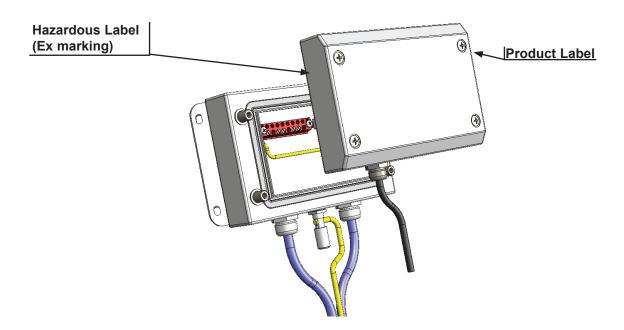
The entire EE300Ex transmitter can be installed directly in the explosion hazard area. The EE300Ex is the ideal transmitter in challenging industrial applications. The housing and measurement sensor made from stainless steel, as well as the proven E+E humidity sensors, ensure reliable and stable measurement results over long periods.

The EE300Ex has a 2-wire design and has two individually scalable analogue outputs with 4...20mA. In addition to the measured values for **relative humidity** and **temperature**, the transmitter also delivers the following calculated values:

•	Absolute humidity	dv
•	Wet-bulb temperature	Tw
•	Specific enthalpy	h
•	Dew-point temperature	Td
•	Frost point temperature	Tf
•	Mixing ratio	r
•	Water vapour partial pressure	е
•	Water activity	aw
•	Water content in mineral transformer oil	x [ppm]
•	Water content in customer-specific oil	x [ppm]

The EE300Ex-HT humidity / temperature transmitter is available in the following designs:

Model		pressure range	working range	Ø-probe
A -	wall mounting		-4060°C (-40140°F)	12mm (0.47")
	remote sensing probe up to 20bar (300psi)	0.120 bar (1.5300 psi)	-40180°C (-40356°F)	12mm (0.47")
E-	remote sensing probe up to 20bar (300psi) with moveable fitting for assembly / disassembly under pressure	0.120 bar (1.5300 psi)	-40180°C (-40356°F)	13mm (0.51")
M -	remote sensing probe up to 300bar (4351psi)	0.01300 bar (0.154351 psi)	-40180°C (-40356°F)	12mm (0.47")
U - remote sensing probe for sensor retraction tool PN250 0.		0.01300 bar (0.154351 psi)	-40180°C (-40356°F)	12/15 (0.47/0.59)


The EE300Ex-xT temperature transmitter is available in the following designs:

Model		I	pressure range	working range	Ø-probe	
١	A -	wall mounting		-4060°C (-40140°F)	6mm (0.24")	
	M -	remote sensing probe	0.120bar (1.5300psi)	-70200°C (-94392°F)	6mm (0.24")	

2.2 EE300Ex labeling

Each EE300Ex is only characterized for one certificate. The Ordering Code on the Product label shows the type of the Ex Certificate on position "Ex-certificate". The exact Ex marking with the certificate number is printed on the Hazardous label (Ex marking). EE300Ex with IECEx, USA or Canada labeling must not be installed in the European Union.

ATEX hazardous label (for EE300Ex without display)

E+E Elektronik A-4209 Engerwitzdorf

TPS 13 ATEX 38892 003 X II 1 G Ex ia IIC T4 Ga II 1 D Ex ia IIIC T80°C Da Electrical Data - See Manual -40°C ≤ Ta ≤ 60°C

Ui = 28V Ui = 28V | i = 100mA Pi = 700mW Ci = 2,2nF Li = negligibly small Series: E 072015

IECEx hazardous label (for EE300Ex without display)

E+E Elektronik A-4209 Engerwitzdorf

6.4Vdc ≤ Ui < 28Vdc Ii = 100mA Pi = 700mW Ci = 2,2nF Li = negligibly small IECEx FMG 14.0017 X Ex ia IIC T4 Ga
Ex ia IIIC T131°C Da
Electrical Data - See Manual
-40°C < Ta < 60°C Series: E 072015

USA hazardous label (for EE300Ex without display)

E+E Elektronik A-4209 Engerwitzdorf FM17US0302X

CL I,II,III DIV 1 GP ABCDEFG T4 CL I,II,III DIV 2 GP ABCDEFG T4 CL I ZN 0 AEx ia IIC T4 Ga

ZN 20 AEx ia IIIC T131°C Da Ta = -40° C to 60°C, Entity - M1_1309080, IP65

FM √us

APPROVED

122017

CANADA hazardous label (for EE300Ex without display)

E+E Elektronik A-4209 Engerwitzdorf FM17CA0154X

CL I,II,III DIV 1 GP ABCDEFG T4
CL I,II,III DIV 2 GP ABCDEFG T4
X10 E X ia III C T4 Ga ZN 20 E X ia III C T131°C Da
Ta = -40°C to 60°C, Entity - M1_1309080, IP65 Series: E

122017

ATEX product label (Example)

HUMIDITY / TEMPERARTURE TRANSMITTER EE300Ex-HT6SExBGFHD1AT/MUW001Tx005

CH1: RH: 4-20mA = 0...100 %RH CH2: T: 4-20mA = 0...100 °C Supply: (9 + RL * 0,02)VDC...28VDC

IECEx product label (Example)

HUMIDITY / TEMPERARTURE TRANSMITTER EE300Ex-HT6SExBGFHD1IC/MUW001Tx005

CH1: RH: 4-20mA = 0...100 %RH

CH2: T: 4-20mA = 0...100 °C Supply: (9 + RL * 0,02)VDC...28VDC

USA product label (Example)

HUMIDITY / TEMPERARTURE TRANSMITTER EE300Ex-HT6SExBGFHD1FM/MUW001Tx005

CH1: RH: 4-20mA = 0...100%RH CH2: T: 4-20mA = 0...100°C Supply: (9 + RL * 0,02)VDC...28VDC

CANADA product label (Example)

HUMIDITY / TEMPERARTURE TRANSMITTER EE300Ex-HT6SExBGFHD1CA/MUW001Tx005

CH1: RH: 4-20mA = 0...100%RH CH2: T: 4-20mA = 0...100°C Supply: (9 + RL * 0,02)VDC...28V DC

2.3 Certification

EUROPE:

The EE300Ex transmitter fulfils the ATEX Directives on intrinsically safe operating equipment.

Applied standards for ATEX:

EN 1127-1:2011

• EN 60079-0:2012

EN 60079-11:2012

The EC type approval test has been carried out by TÜV SÜD Product Service GmbH.

Certified to EC type approval test TPS 13 ATEX 38892 003 X.

Entity parameters $U_i = 28V$; $I_i = 100mA$; $P_i = 700mW$; $C_i = 2,2nF$; $L_i \approx 0mH$

Ex-Designation

Transmitter without display (Ex) II 1 G Ex ia IIC T4 Ga / ⟨Ex II 1 D Ex ia IIIC T80°C Da

/ ⊗II 1 G Ex ia IIB T4 Ga Transmitter with display ⟨ II 2 G Ex ia IIC T4 Gb

Remote sensing probe

Working temperature range for the probes:

Specification of the temperature class "TKG" for use in gas area exposed to explosion hazards and "TKD" for use in dust area exposed to explosion hazards as a function of the ambient temperature "Tamb" for the humidity and temperature probe and the temperature probe:

TKG	TKD	Humidity and Temperature Probe
T6	80°C	-40°C ≤ Tamb ≤ +60°C
T5	95°C	-40°C ≤ Tamb ≤ +75°C
T4	130°C	-40°C ≤ Tamb ≤ +110°C
T3	195°C	-40°C ≤ Tamb ≤ +175°C
T2	200°C	-40°C ≤ Tamb ≤ +180°C
T1	200°C	-40°C ≤ Tamb ≤ +180°C

TKG	TKD Temperature Probe	
T6	80°C	-70°C ≤ Tamb ≤ +60°C
T5	95°C	-70°C ≤ Tamb ≤ +75°C
T4	130°C	-70°C ≤ Tamb ≤ +110°C
Т3	195°C	-70°C ≤ Tamb ≤ +175°C
T2	220°C	-70°C ≤ Tamb ≤ +200°C
T1	220°C	-70°C ≤ Tamb ≤ +200°C

INTERNATIONAL:

Applied Standard for IECEx:

• IEC 60079-0:2011

IEC 60079-11:2011

The Certificate of Conformity has been carried out by FM Approvals.

Certificate No.: IECEx FMG 14.0017 X

Entity parameters: $6.4 \text{ Vdc} \le U_i \le 28 \text{ Vdc}$; $I_i = 100 \text{mA}$; $P_i = 700 \text{mW}$; $C_i = 2.2 \text{nF}$; $L_i = 0 \text{mH}$

Ex-Designation

Transmitter without display Ex ia IIC T4 Ga / Ex ia IIIC T131°C Da Ex ia IIC T4 Gb / Ex ia IIB T4 Ga

Transmitter with display Remote sensing probe Ex ia IIC T6-T1 Ga / Ex ia IIIC T80°C Da

Humidity and temperature probe:

T6 temperature class based on -40°C (-40°F) ≤ Ta ≤ 60°C (140°F)

T5 temperature class based on -40°C (-40°F) ≤ Ta ≤ 75°C (167°F)

• T4 temperature class based on -40° C (-40° F) \leq Ta \leq 110 $^{\circ}$ C (230 $^{\circ}$ F)

• T3 temperature class based on -40°C (-40°F) ≤ Ta ≤ 175°C (347°F) T2 temperature class based on -40°C (-40°F) ≤ Ta ≤ 180°C (356°F)

• T1 temperature class based on -40° C (-40° F) \leq Ta \leq 180 $^{\circ}$ C (356 $^{\circ}$ F)

Temperature probe:

T6 temperature class based on -70°C (-94°F) ≤ Ta ≤ 60°C (140°F)

T5 temperature class based on -70°C (-94°F) ≤ Ta ≤ 75°C (167°F)

T4 temperature class based on -70°C (-94°F) ≤ Ta ≤ 110°C (230°F)

 T3 temperature class based on -70°C (-94°F) ≤ Ta ≤ 175°C (347°F) T2 temperature class based on -70°C (-94°F) ≤ Ta ≤ 200°C (392°F)

• T1 temperature class based on -70°C (-94°F) ≤ Ta ≤ 200°C (392°F)

KOREAN (IECEx based):

Applied law for Korea:

Article 34 of the Occupational Safety & Health Act

The Certificate of Conformity has been carried out by KC.

Certificate No. **REMOTE: 17-AV4BO-0107X**Certificate No. **WALL: 16-AV4BO-0364X**

Entity parameters: 6.4 Vdc \leq U_i \leq 28Vdc; I_i = 100mA; P_i = 700mW; C_i = 2.2nF; L_i = 0mH

Ex-Designation

Transmitter

Ex ia IIC T4 (Ta = -40° C to 60° C)

Remote sensing probe

Ex ia IIC T6-T1 (Ta = -40° C to 180° C)

Humidity and temperature probe:

- T6 temperature class based on -40°C (-40°F) ≤ Ta ≤ 60°C (140°F)
- T5 temperature class based on -40°C (-40°F) ≤ Ta ≤ 75°C (167°F)
- T4 temperature class based on -40°C (-40°F) ≤ Ta ≤ 110°C (230°F)
- T3 temperature class based on -40°C (-40°F) ≤ Ta ≤ 175°C (347°F)
 T2 temperature class based on -40°C (-40°F) ≤ Ta ≤ 180°C (356°F)
- T1 temperature class based on -40°C (-40°F) ≤ Ta ≤ 180°C (356°F)

In area with explosive gas group IIC, the EE300Ex must be mounted in zone 1. In gas Ex area of group IIB the installation in zone 0 is permitted.

No dust certification or temperature probe without humidity.

SPECIFIC CONDITIONS OF USE:

- 1. There is no display permitted in gas hazard area Zone 0 for group IIC.
- 2. There is no filter cap made of plastic or with plastic parts permitted in the gas hazard area Zone 0 for group IIC.
- EE300Ex remote probe (temperature humidity 12 mm and temperature 6 mm) must be earthed.
- 4. In case of using both measuring channels, each channel must be driven separately with their own galvanic safety barrier.

JAPAN (IECEx based):

Type Approval Certificate has been carried out by TIIS.

Certificate No.: TC22061

Entity parameters: $U_i = 28Vdc$; $I_i = 100mA$; $P_i = 700mW$; $C_i = 2.2nF$; $L_i = 0mH$

Ex-Designation

Ex ia IIC T4 Gb (Ta = -40° C to 60° C)

No installation in Ga permitted. EE300Ex must be mounted in zone 1. No dust certification or temperature probe without humidity.

Chinese (IECEx based):

Certificate of Conformity has been carried out by NEPSI.

Cert NO. GYJ16.1417X

Entity parameters: $U_i = 28Vdc$; $I_i = 100mA$; $P_i = 700mW$; $C_i = 2.2nF$; $L_i = 0mH$

Ex-Designation

Without display:

Ex ia IIC T4 Ga

Ex iaD 20 T131

With display:

Ex ia IIC T4 Gb

Ex ia IIB T4 Ga

Remote sensing probe

Ex ia IIC T1-T6

Ex iaD 20 T80

Temperature operating range	Equipment	Temperature Class
-40°C ~ +60°C	Integrated transmitter	T4/T131
-40°C ~ +60°C / -70°C ~ +60°C		T6/T80
-40°C ~ +75°C / -70°C ~ +75°C		T5
-40°C ~ +110°C / -70°C ~ +110°C	Remote temperature-humidity-probe/	T4
-40°C ~ +175°C / -70°C ~ +175°C	Remote temperature probe	Т3
-40°C ~ +180°C / -70°C ~ +200°C		T2
-40°C ~ +180°C / -70°C ~ +200°C		T1

SPECIFIC CONDITIONS OF USE:

- 1. There is no display permitted in the dust hazardous area and the gas hazard area EPL Ga for group IIC.
- 2. There is no filter cap made of plastic or with plastic parts permitted in the gas hazard area EPL Ga for group IIC.
- 3. EE300Ex remote probe (temperature humidity 12 mm and temperature 6 mm) must be earthed.
- 4. The serial software configuration port of the EE300Ex may only be used with the EE-PCA configuration adapter and the HA011061 connection cable.
- 5. For use EE300Ex with remote probe in EPL Ga the remote probe must be installed in a metallic grounded protective tube.
- 6. In case of using both measuring channels, each channel must be driven separately with their own galvanic safety barrier.

USA:

Applied Standard for the U.S. NEC 500, NEC505 and 506:

•	FM Class 3600	2011
•	FM Class 3610	2015
•	FM Class 3611	2016
•	FM Class 3810	2005
•	ANSI/ISA 61010-1	2012
•	ANSI/ISA 60079-0	2013
•	ANSI/ISA 60079-11	2014
•	ANSI/IEC 60529	2004

The Certificate of Conformity has been carried out by FM Approvals.

Certificate No.: FM17US0302X

Entity parameters:

```
6.4 Vdc \leq V<sub>max</sub> (or U<sub>i</sub>) \leq 28 Vdc; I<sub>max</sub> (or I<sub>i</sub>) = 100mA; P<sub>i</sub> = 700mW; C<sub>i</sub> = 2,2nF; L<sub>i</sub> = 0mH
```

Ex-Designation NEC 500 (Division)

Transmitter without display

```
Class I, II, III, Division 1, Groups ABCDEFG; T4 Ta = -40^{\circ}C to +60^{\circ}C; Entity – M1_139080; IP65 Class I, II, III, Division 2, Groups ABCDEFG; T4 Ta = -40^{\circ}C to +60^{\circ}C
```

Transmitter with display

```
Class I, Division 1, Groups CD; T4 Ta = -40°C to +60°C; Entity – M1_139080 Class I, Division 2, Groups ABCD; T4 Ta = -40°C to +60°C; Entity – M1_139080
```

Remote sensing probe

Class I, II, III, Division 1, Groups ABCDEFG; T6...T1; Entity – M1_139080; IP65 Class I, II, III, Division 2, Groups ABCDEFG; T6...T1

Humidity and temperature probe:

- T6 temperature class based on -40°C (-40°F) ≤ Ta ≤ 60°C (140°F)
- T5 temperature class based on -40°C (-40°F) ≤ Ta ≤ 75°C (167°F)
- T4 temperature class based on -40°C (-40°F) ≤ Ta ≤ 110°C (230°F)
- T3 temperature class based on -40°C (-40°F) ≤ Ta ≤ 175°C (347°F)
- T2 temperature class based on -40°C (-40°F) ≤ Ta ≤ 180°C (356°F)
- T1 temperature class based on -40°C (-40°F) ≤ Ta ≤ 180°C (356°F)

Temperature probe:

- T6 temperature class based on -70°C (-94°F) ≤ Ta ≤ 60°C (140°F)
- T5 temperature class based on $-70^{\circ}\text{C} (-94^{\circ}\text{F}) \le \text{Ta} \le 75^{\circ}\text{C} (167^{\circ}\text{F})$
- T4 temperature class based on -70°C (-94°F) ≤ Ta ≤ 110°C (230°F)
- T3 temperature class based on -70°C (-94°F) ≤ Ta ≤ 175°C (347°F)
 T2 temperature class based on -70°C (-94°F) ≤ Ta ≤ 200°C (392°F)
- T1 temperature class based on -70°C (-94°F) ≤ Ta ≤ 200°C (392°F)
 T1 temperature class based on -70°C (-94°F) ≤ Ta ≤ 200°C (392°F)

Ex-Designation NEC 505/506 (Zone)

Transmitter without display

Class I, Zone 0, AEx ia IIC T4 Ta = -40° C to $+60^{\circ}$ C Ga; Entity – M1_139080; IP65 Zone 20, AEx ia IIIC T131 $^{\circ}$ C Ta = -40° C to $+60^{\circ}$ C Da; Entity – M1_139080; IP65

Transmitter with display

Class I, Zone 0, AEx ia IIB T4 Ta = -40° C to $+60^{\circ}$ C Ga; Entity - M1_139080 Class I, Zone 1, AEx ia IIC T4 Ta = -40° C to $+60^{\circ}$ C Gb; Entity - M1_139080

Remote sensing probe

Class I, Zone 0, AEx ia IIC T6...T1 Ga; Entity – M1_139080; IP65 Zone 20, AEx ia IIIC T80°C Da; Entity – M1_139080; IP65

Humidity and temperature probe:

- T6 temperature class based on -40°C (-40°F) ≤ Ta ≤ 60°C (140°F)
- T5 temperature class based on -40°C (-40°F) ≤ Ta ≤ 75°C (167°F)
- T4 temperature class based on -40°C (-40°F) ≤ Ta ≤ 110°C (230°F)
- T3 temperature class based on $-40^{\circ}\text{C} (-40^{\circ}\text{F}) \leq \text{Ta} \leq 175^{\circ}\text{C} (347^{\circ}\text{F})$
- T2 temperature class based on -40°C (-40°F) ≤ Ta ≤ 180°C (356°F)
 T1 temperature class based on -40°C (-40°F) ≤ Ta ≤ 180°C (356°F)

Temperature probe:

- T6 temperature class based on -70°C (-94°F) ≤ Ta ≤ 60°C (140°F)
- T5 temperature class based on -70°C (-94°F) ≤ Ta ≤ 75°C (167°F)
- T4 temperature class based on $-70^{\circ}\text{C} (-94^{\circ}\text{F}) \le \text{Ta} \le 110^{\circ}\text{C} (230^{\circ}\text{F})$
- T3 temperature class based on $-70^{\circ}\text{C} (-94^{\circ}\text{F}) \leq \text{Ta} \leq 175^{\circ}\text{C} (347^{\circ}\text{F})$
- T2 temperature class based on -70°C (-94°F) ≤ Ta ≤ 200°C (392°F)
 T1 temperature class based on -70°C (-94°F) ≤ Ta ≤ 200°C (392°F)

Canada:

Applied Standard for Canada CEC Section 18 and Annex J:

 CSA-22.2 No. 0-M91 	R2006
 CAN/CSA-22.2 No. 61010-1 	2012
 CSA-22.2 No. 157-92 	2016
 CAN/CSA-22.2 No. 60079-0 	2015
 CAN/CSA-22.2 No. 60079-11 	2014
 CSA-C 22.2 No. 142-M1987 	R2004
 CSA-C 22.2 No. 213 	2015
 CSA-C 22.2 No. 60529 	R2010

The Certificate of Conformity has been carried out by FM Approvals.

Certificate No.: FM17CA0154X

Entity parameters:

6.4 Vdc \leq V_{max} (or U_i) \leq 28 Vdc; I_{max} (or I_i) = 100mA; P_i = 700mW; C_i = 2,2nF; L_i = 0mH

Ex-Designation CEC Annex J (Division)

Transmitter without display

Class I, II, III, Division 1, Groups ABCDEFG; T4 Ta = -40°C to +60°C; Entity – M1_139080; IP65 Class I, II, III, Division 2, Groups ABCDEFG; T4 Ta = -40°C to +60°C

Transmitter with display

Class I, Division 1, Groups CD; T4 Ta = -40°C to +60°C; Entity – M1_139080 Class I, Division 2, Groups ABCD; T4 Ta = -40°C to +60°C; Entity – M1 139080

Remote sensing probe

Class I, II, III, Division 1, Groups ABCDEFG; T6...T1; Entity – M1_139080; IP65 Class I, II, III, Division 2, Groups ABCDEFG; T6...T1

Humidity and temperature probe:

- T6 temperature class based on -40°C (-40°F) ≤ Ta ≤ 60°C (140°F)
- T5 temperature class based on -40°C (-40°F) ≤ Ta ≤ 75°C (167°F)
- T4 temperature class based on -40°C (-40°F) ≤ Ta ≤ 110°C (230°F)
- T3 temperature class based on -40°C (-40°F) ≤ Ta ≤ 175°C (347°F)
- T2 temperature class based on -40°C (-40°F) ≤ Ta ≤ 180°C (356°F)
- T1 temperature class based on -40°C (-40°F) ≤ Ta ≤ 180°C (356°F)

Temperature probe:

- T6 temperature class based on -70°C (-94°F) ≤ Ta ≤ 60°C (140°F)
- T5 temperature class based on -70°C (-94°F) ≤ Ta ≤ 75°C (167°F)
- T4 temperature class based on -70°C (-94°F) ≤ Ta ≤ 110°C (230°F)
- T3 temperature class based on -70°C (-94°F) \leq Ta \leq 175°C (347°F)
- T2 temperature class based on -70°C (-94°F) ≤ Ta ≤ 200°C (392°F)
- T1 temperature class based on -70°C (-94°F) ≤ Ta ≤ 200°C (392°F)

Ex-Designation CEC Section 18 (Zone)

Transmitter without display

Zone 0, Ex ia IIC T4 Ta = -40°C to +60°C Ga; Entity – M1_139080; IP65 Zone 20, Ex ia IIIC T131°C Ta = -40°C to +60°C Da; Entity – M1_139080; IP65

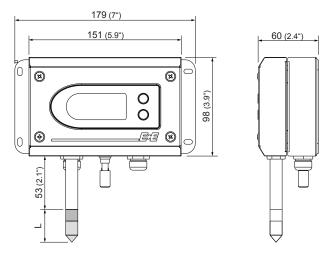
Transmitter with display

Zone 0, Ex ia IIB T4 Ta = -40°C to +60°C Ga; Entity – M1_139080 Zone 1, Ex ia IIC T4 Ta = -40°C to +60°C Gb; Entity – M1_139080

Remote sensing probe

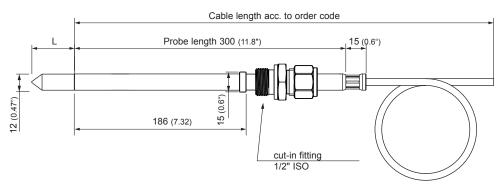
Zone 0, Ex ia IIC T6...T1 Ga; Entity – M1_139080; IP65 Zone 20, Ex ia IIIC T80°C Da; Entity – M1_139080; IP65

Humidity and temperature probe:

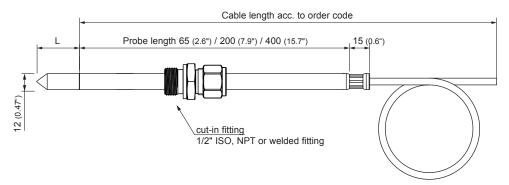

- T6 temperature class based on -40°C (-40°F) ≤ Ta ≤ 60°C (140°F)
- T5 temperature class based on -40°C (-40°F) ≤ Ta ≤ 75°C (167°F)
- T4 temperature class based on -40°C (-40°F) ≤ Ta ≤ 110°C (230°F)
- T3 temperature class based on -40°C (-40°F) ≤ Ta ≤ 175°C (347°F)
 T2 temperature class based on -40°C (-40°F) ≤ Ta ≤ 180°C (356°F)
- T1 temperature class based on -40°C (-40°F) ≤ Ta ≤ 180°C (356°F)

Temperature probe:

- T6 temperature class based on -70°C (-94°F) ≤ Ta ≤ 60°C (140°F)
- T5 temperature class based on -70°C (-94°F) ≤ Ta ≤ 75°C (167°F)
- T4 temperature class based on -70°C (-94°F) ≤ Ta ≤ 110°C (230°F)
- T3 temperature class based on -70°C (-94°F) ≤ Ta ≤ 175°C (347°F)
- T2 temperature class based on -70°C (-94°F) ≤ Ta ≤ 200°C (392°F)
- T1 temperature class based on $-70^{\circ}\text{C} (-94^{\circ}\text{F}) \leq \text{Ta} \leq 200^{\circ}\text{C} (392^{\circ}\text{F})$

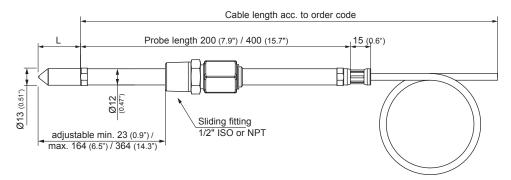

2.4 Housing and probe dimensions

Wall mounting humidity and temperature - Model A

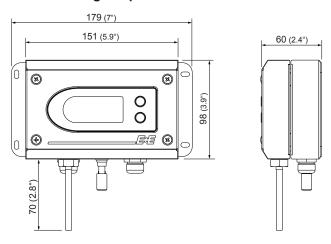


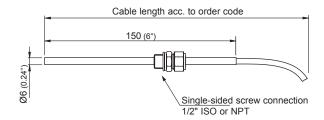
L = filter cap	Length in mm		
Stainless steel sinter filter	33 (1.3")		
PTFE filter	33 (1.3")		
Stainless steel grid filter	39 (1.5")		
Oil filter	32 (1.26")		

Remote sensing probe humidity/temperature up to 300 bar (4351 psi) - Model U


Remote sensing probe humidity/temperature up to 20bar (300psi) or 300 bar (4351 psi) - Model E and M

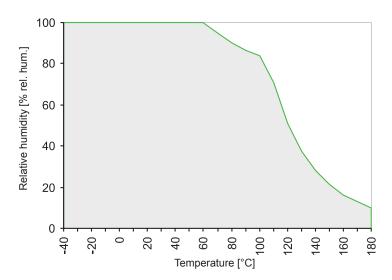
Pressure-tight probe up to 300 bar (4351 psi) have a leak rate A according to EN12266-1


Remote sensing probe humidity/temperature up to 20bar (300psi) - Model E with sliding fitting



Pressure-tight probe up to 20bar (300psi) have a leak rate B according to EN12266-1

Wall mounting temperature - xT model



Remote sensing probe temperature

2.5 Humidity probe working range

The grey area shows the allowed measurement range for the humidity sensor. Although working points that lie outside of this range do not lead to the destruction of the element, the specified measurement accuracy cannot be guaranteed, however.

2.6 Dewpoint measurement in natural gas

Valid only for EE300Ex-HT6S...Gx (Special option for natural Gas application)
The accuracy of the dewpoint measurement is affected by the working pressure. The actual working pressure has to be set with the configuration software.

Menu item "Configuration" --> "Parameters"

Factory setting: 1013.25 mbar

2.7 Measurement of moisture in oil

Besides measurement in the air, the EE300Ex can be employed for measurement of both absolute water content (x) in ppm or relative water activity (aw) in oils. The USA and Canada approval is valid for air and gas measurement only.

3. INSTALLATION IN AN EXPLOSION HAZARD AREA

3.1 General

The EE300Ex has been certified in accordance with the ATEX 2014/34/EU Directive, IECEX Scheme, , National Electrical Code ANSI-NFPA 70 (NEC®) and Canadian Electrical Code (CSA C22.1).

Devices in explosion-hazard areas are only permitted for operation in atmospheric conditions

-20 °C (-4°F) \leq T \leq 40 °C (104 °F) 0.8 bar (12 psi) \leq p \leq 1.1 bar (16 psi) In air normally 21 % (V/V)

If suitable measures have been carried out in accordance with EN1127-1, the EE300Ex is also permitted for operation outside atmospheric conditions in line with the manufacturer's instructions.

When conducting measurements in explosion-hazard areas, the EE300Ex must always be connected via intrinsically safe power supply devices or protective barriers.

Even if only the measurement probe is installed in the explosion hazard area, the EE300Ex must be supplied using intrinsically safe equipment.

Rules for the interconnection of intrinsically safe electrical circuits in accordance with EN60079-14, EN60079-25 and IEC60079-14, IEC60079-25 (proof of intrinsic safety in the system description) and national requirements should be followed. For the U.S., Canada see Controll Drawing M1_1309080 and ANSI/ISA RP12.6.01, NEC and CEC.

If a risk analysis of the installation in line with EN1127-1 reveals a risk of lightning strike, an overvoltage protection device should be installed in the intrinsically safe circuits. Requirements for the installation of overvoltage protective devices can be found in the standard EN60079-25. For the U.S., Canada see ANSI/ISA RP12.6.01, NEC and CEC.

Example of an overvoltage protection device

Manufacturer: Dehn

Type: ITAK EXI BXT 24

to protect intrinsically safe measurement circuits for 2DA

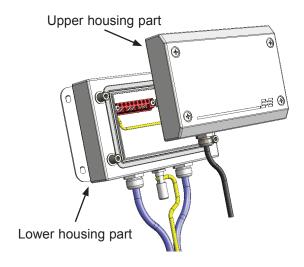
C2 nominal discharge surge current: (8/20) 20 kA
Nominal voltage: 30 V DC
max. permiss. input voltage: 33 V DC
max. permiss. input current: 0.5 A
Alu housing, grey, protection rating: IP 65

ATEX Approval:

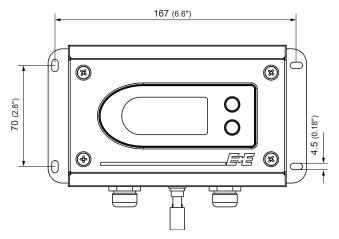
II 2 (1) G Ex ia IIC T4, T5, T6 II 2 G Ex ib IIC T4, T5, T6

Follow the installation instructions from DEHN!

Each EE300Ex is provided with its production date. The production date is shown on the label (after the series) as follows:


WWYYYY WW week of the year of construction

YYYY year of construction


3.2 Housing assembly

The EE300Ex housing has a two-part construction.

- · Lower housing section with the connection and earthing terminals.
- · Upper housing section with the electronics and measurement probe.

3.2.1 Drilling plan for the housing

The lower housing section is mounted using 4 screws. Screw diameter < 4.5mm (0.18")

If the upper housing section is removed from the hazard area, e.g. for a calibration, the empty lower section should be protected against dirt and electrostatic charge via a cover HA011401.

Unused cable glands should be sealed using a sealing plug.

3.3 Assembly in category 1 (zone 0 / 20); Division 1

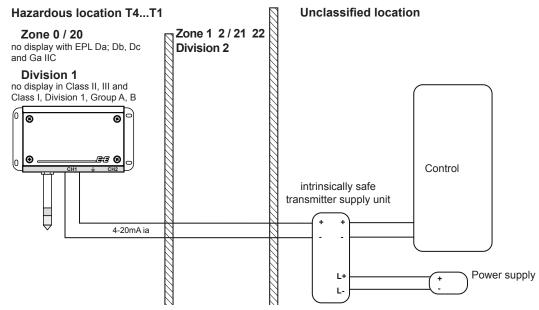
Only intrinsically safe power supply devices are approved to supply EE300Ex in category 1 or Division 1.

In areas belonging to gas group IIC or Class I, Division 1, Group A,B, it must be ensured that during installation and operation, the possibility of impact and friction sparks has been excluded in rarely occurring fault situations.

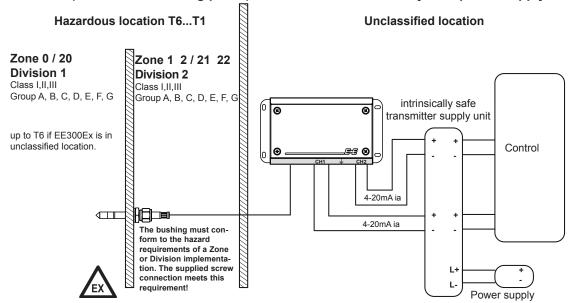
Work on open transmitter must only be performed if it is guaranteed that no explosive atmosphere is present.

In category 1 or Division 1, the sensor line should be laid in an earthed metallic protective hose. With Group III or Class II, III, ensure that there are no dust or fibers and flyings deposits in the protective tube.

CH1 and CH2 must be galvanically isolated from one another during operation.



There is no display permitted in the gas hazard area EPL Ga for Group IIC or Class I, Division 1, group A, B and in the dust hazard area for groups IIIA, IIIB and IIIC or Class II, III.



The probe for wall mounting is not permitted to be used for Zone or Division bushing.

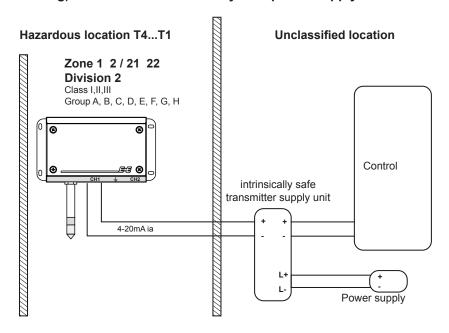
EE300Ex (wall mounting) 1 channel via intrinsically safe power supply device:

EE300Ex (with remote sensing probe) 2 channels via intrinsically safe power supply device:

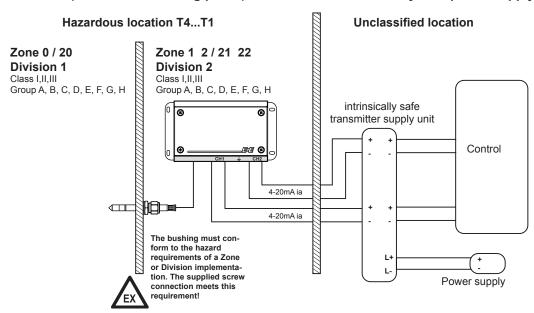
3.4 Assembly in categories 2 and 3 (Zone 1 2 / 21 22), Division 2

Only intrinsically safe power supply devices and protective barriers are approved to supply EE300Ex in category 2 and 3 or Division 2.

No display is permitted in the dust hazard area (Group III) or Class II, III.



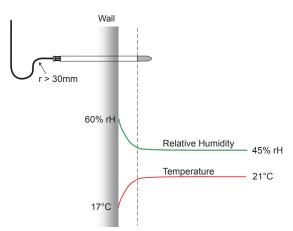
CH1 and CH2 must be galvanically isolated from one another during operation.



The probe for wall mounting is not permitted to be used for Zone or Division bushing.

EE300Ex (wall mounting) 1 channel via intrinsically safe power supply device:

EE300Ex (with remote sensing probe) 2 channels via intrinsically safe power supply device:


3.5 Mounting the measurement sensor

To mount the transmitter, select a location with stable conditions, i.e. protected against direct sunlight or rain. The measurement probe should be fitted at a location where representative measured values are to be anticipated for the process.

The measurement probe must be mounted horizontally or vertically (downwards). If possible, a drip tray should be placed into position before every installation.

A temperature drop along the measurement sensor should be avoided.

Mechanical ambient conditions

When installing the sensor, the mechanical influences of the installation site should be taken into account. (e.g. vibrations, shock loads via startup processes, temperature fluctuations,...). If the mechanical stability or seal on the probe cannot be ensured, additional mechanical fastening or support should be included.

The probe cable and connection cable should be handled and laid in the hazard area so that no static charges can arise (e.g. metal hose).

Filter caps

The following filter caps ensure sufficient protection against electrostatic discharges relating to explosion group IIB, but are **not** permitted for use in EPL Ga IIC or Class I, Division 1, Group A,B:

- PTFE filter (order code E)
- PTFE filter on metal body (order code K)
- H2O2 filter (order code L)

The following filter caps are permitted for use in EPL Ga IIC or Class I, Division 1, Group A,B:

- Stainless steel sinter filter (order code D)
- Stainless steel lattice filter (order code I)
- Oil filter (order code M)

3.5.1 Mounting the clamping ring screw connection

The clamping ring screw connection can be used as Zone or Division bushing. To do this, the screw connection is screwed into the isolating wall and must have a seal tightness of IP67.

Safety instructions for pressure-tight screw connection:

- · The system must not be vented by releasing the union nuts.
- Do not assemble and tighten pipe screw connections if the system is under pressure.
- Always use the correct thread sealant on conical pipe threads.
- Never rotate the screw connection body. Instead, hold the screw connection body securely and turn the union nut.
- · Avoid unnecessary disassembly of unused pipe screw connections.

Installation instructions:

- · Tighten the union nuts finger-tight.
- · Mark the union nuts at the 6 o' clock position.
- Hold the screw connection body tight and tighten the union nuts with 1 ¼ turns to the 9 'o clock position.

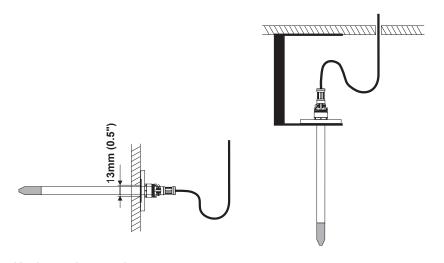
Assembly with high pressure applications and applications with a high security factor:

- Tighten the union nuts until the pipe can no longer be turned by hand or can no longer be moved axially in the fitting.
- Mark the union nuts at the 6 o' clock position.
- Hold the screw connection body tight and tighten the union nuts with 1 ¼ turns to the 9 'o clock position.

Re-mounting:

- Slide measurement sensor with clamping rings into the fitting as far as it will go.
- Tighten the nut "fingertight", then tighten by approx. a ¼ turn using a spanner.

3.5.2 Mounting with mounting flange (optional)



The assembly flange must not be used as Zone or Division bushing, i.e. it must only be used for fastenings and bushings in explosion-hazard areas of the same category.

i

The measurement sensor must be mounted horizontally or vertically (downwards). If possible, a drip tray should be placed into position before every installation.

Horizontal mounting

Vertical mounting

3.5.3 Mounting the probe using ball valve (optional)

With ball valve mounting, the system being measured does not need to be emptied or brought to a standstill to mount or remove the probe. Install the sensor head against the flow direction.

It is only permitted to use one ball valve that is approved for use in explosion hazard areas.

The process pressure must be below 10bar (145psi).

The two metal sealing rings (see figure) should be replaced each time after being screwed on.

MOUNTING THE PROBE:

The mounting temperature is not permitted to deviate from the usage temperature by more than ±40°C (104°F).

- Mount the probe with the ball valve closed.
- Open the ball valve.
- Insert the sensor head through the ball valve into the process. A manual pressing tool is recommended at high pressure.
- To ensure that the probe is securely installed, the closing nut must be tightened at a defined torque of 30Nm.

If there is no torque wrench present, tighten the closing nut by hand as far as possible. Turn another ~50° using a suitable open-ended spanner.

Metal sealing ring

(as standard with probe)

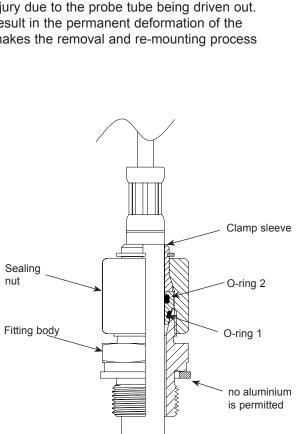
Extension (not provided with an NPT

thread)

A tightening torque that is too low results in a lower clamping force (fixing force) of the clamp sleeve. There is therefore a risk of injury due to the probe tube being driven out. An excessively high tightening torque can result in the permanent deformation of the clamping sleeve and the probe tube. This makes the removal and re-mounting process more difficult or impossible.

REMOVING THE PROBE:

- Hold the probe tube tight. (Caution: Do not bend the connection cable)
- Slowly unfasten the closing nut using a spanner (spanner size 24) until the driveout force affects the tube. Never fully remove the closing nut when installed, and instead screw on only as far as possible!



- After the sensor head has been removed from the process as far as it will go, close the ball valve.
- The probe can be fully removed.

Both for mounting and removal, ensure that O-ring 1 is correctly installed.

If damaged, O-ring 1 can be replaced by the

O-ring type: 13x1.5mm (0.5"x 0.06") - FKM-60 Spare part order no. HA050308

Metal sealing ring (included with the ball

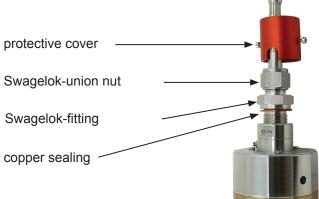
Internal diameter: ≥ 13.1 mm (0.51")

valve set as standard)

3.5.4 Mounting the probe using sensor retraction tool (optional)

Observe the operating instructions of the sensor retraction tool! It may only be used the sensor retraction tool ZM-WA-025-040-EST or BG-WA-103-045-EST. With the sensor retraction tool 250 bar it may only be used the sensor probe model U.

The delivery scope of the sensor probe includes the copper sealing for the Swagelok screw connection.



Make sure that the sensor retraction tool is in "SERVICE" position (see manual of the sensor retraction tool).

 Before installing the sensor, dismount the closing plug ½" by means of a hexagonal wrench 10 mm and "park" it at the thread hole M10 designed for that purpose.

· Insert the sensor with copper sealing Swagelok and protective cover into the sensor retraction tool until the stop position.

- Fasten the Swagelok screw conneciton ½" in the sensor retraction tool with the open-jaw wrench (wrench size 27mm). Do not forget to check the copper sealing!
- · At first manually tighten the Swagelok union nut with cutting ring. Now adjust the sensor.
- · By means of a screw wrench, tighten the union nut just firmly enough that the screw connection cannot be moved manually any longer.

Mark the union nuts at the 6 o' clock position.

- · Hold the screw connection body tight and tighten the union nuts with 1 1/4 turns to the 9 'o clock position.
- · To mount the protective cover for the Swagelok protective cover, proceed in the following order:
 - · Push the protective cover down to the adjusting device: screws must point to the flat area (wrench size 26mm)
 - · Tighten screws M3.

3.6 Calculation of the maximum cable length

Intrinsically safe power supply device STAHL 9160/13-11-11 (order code HA011405)

Technical data for EE300Ex

Supply voltage: $U_{Bin} = 9V + RL * 0.02A$ Max. current: I_{out} max = 20mA

Technical data for STAHL 9160/13-11-11

Nominal operating voltage: $U_N = 24V$ Input voltage for transmitter: $U_S = 16V$ Max. load: $R_L = 600 \text{Ohm}$

Calculation of maximum cable length of intrinsically safe input isolator

Cable 0.75mm² (0.01in²) (example): $R_{cable} = 0.0267\Omega/m$

Load resistance (load): $R_L = 200\Omega$ Input voltage for transmitter: $U_S = 16V$

Min. supply voltage EE300Ex: $U_{Bmin} = 9V + 200\Omega * 0.02A = 13V$

Maximum voltage drop on cable: $U_{cable} = U_{S} - U_{Bmin} = 16V - 13V = 3V$

Total cable resistance: $R_{cable total} = R_{cable} * L_{total} * 2_{(supply and return line)}$

 $\begin{array}{l} U_{drop} \ = \ R_{cable \ total} \ ^* \ I_{out \ max} \ = \\ \ \ = \ R_{cable} \ ^* \ L_{total} \ ^* \ 2 \ ^* \ I_{out \ max} \\ L_{total} \ \ = \ U_{drop} \ / \ (I_{out \ max} \ ^* \ 2 \ ^* \ R_{cable} \) \\ L_{total} \ \ = \ 3V \ / \ (0.02A \ ^* \ 2 \ ^* \ 0.0267\Omega/m \) \end{array}$

Transform in accordance with L_{total} $L_{total} = U_{drop} / (I_{out max} * 2 * R_{cable})$ $L_{total} = 3V / (0.02A * 2 * 0.0267\Omega/m)$

L_{total} = 2800m maximum cable length

Caution: this is the max. length without allowing for the intrinsic safety. (cable capacity and inductivity may reduce the length even further)

3.7 Selecting a suitable power supply device for ATEX Zone concept:

Example for evidence of the intrinsic safety in accordance with EN60079-14:2008 12.2.5.2, EN60079-25:2010 13.1. CH1 and CH2 are galvanically separated, meaning the evidence of the intrinsic safety can only be carried out using appropriate equipment.

Installation assumption:

Installing the EE300Ex (without display) in Zone 0

Connecting cable length: 300m (984ft)

Explosion group: IIC
Temperature class: T4

Both electric circuits laid in one cable.

Intrinsically safe power supply device STAHL 9160/13-11-11 (Excerpt from the EC type approval test certificate)

Certified to:

B II 3 (1) G Ex nA nC [ia Ga] IIC T4 Gc (certificate number: DMT 03 ATEX E 010 X)

⟨€⟩ II (1) D [Ex ia Da] IIIC (certificate number: DMT 03 ATEX E 010 X)

Entity parameters:

 $\begin{array}{lll} {\rm U_0} & = 27 {\rm V} \\ {\rm I_0} & = 88 {\rm mA} \\ {\rm P_0} & = 576 {\rm mW} \\ {\rm C_0~IIC} & = 90 {\rm nF} \\ {\rm C_0~IIB} & = 705 {\rm nF} \\ {\rm L_0~IIC} & = 2.3 {\rm mH} \\ {\rm L_0~IIB} & = 17 {\rm mH} \\ \end{array}$

Technical data for connecting cable

Cable type: ÖLFLEX® EB CY from manufacturer Lapp Kabel

Cable cross-section: 4 x 0.75mm² (0.06x0.01in²)

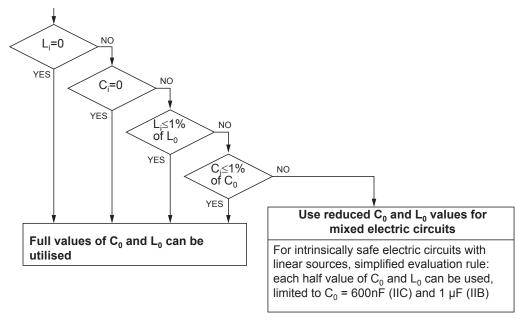
Operating capacity: 110nF/km Inductivity: 0.65mH/km

Cable capacity for 300m (984ft): CK = 0.3km * 110nF/km = 33nFCable inductivity for 300m (984ft): LK = 0.3km * 0.65mH/km = 0.195mH

Technical data for EE300Ex (extract from the EC type approval test certificate) Certified to:

II 1 G Ex ia IIC T4 Ga II 1 D Ex ia IIIC T80°C Da

Entitiy parameters:


 $U_{i} = 28V$ $I_{i} = 100 \text{mA}$ $P_{i} = 700 \text{mW}$ $C_{i} = 2.2 \text{nF}$

L_i = negligibly small

Evidence of the intrinsic safety in accordance with EN60079-11:2012 EN60079-25:2010 (Appendix A)

Protection level of the intrinsically safe current circuit is is met!

Evidence of the intrinsic safety in accordance with EN60079-11:2012, EN60079-25:2010 (Appendix A)

 L_i = negligibly small \rightarrow no reduced C_0 and L_0 values required!

4. ELECTRICAL CONNECTIONS

It is essential that installation, electrical connection, commissioning, operation and maintenance in explosion hazard areas are only carried out by trained specialist personnel authorised to do so by the system operator.

Installation in accordance with NEC or CEC with consideration of the Control Drawing M1_1309080

For installation in an explosion hazard area, it is essential to ensure that all relevant standards are observed. For the installation, standard EN60079-14, EN60079-25 or IEC60079-14, IEC60079-25 is to be applied, and for repair and maintenance, the standards EN60079-17 or IEC60079-17 and EN60079-19 or IEC60079-19 as well as the relevant national regulations should be applied.

Installation in the U.S. must be carried out in accordance with ANSI / ISA RP 12.6.01-2003 and the National Electrical Code (NEC).

Installation in Canada must be carried out in accordance with the Canadian Electrical Code (CEC).

The EE300Ex is designed as a 2-wire current transmitter.

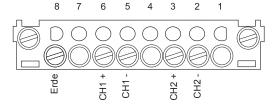
CH1 should always be connected, CH2 can also be activated if required. Both outputs are galvanically isolated.

Cable ends must be fitted with the appropriate wire-end sleeves. After the connection in the terminal, an air gap of at least 2mm (0.08") must be left between the strands and a 6mm (0.2") air gap between channels 1 and 2.

Changes to the probe cable length are only permitted to be carried out by the manufacturer (transmitter will need to be re-calibrated).

4.1 Connecting cable

A shielded cable should be used. The shield should be laid on one side with the EE300Ex.


The cable must conform to the following specifications (requirements of EN60079-14, EN60079-25) for ATEX:

- Maximum cross-section 1.5mm² (0.02in²)
- Single stranded wire diameter: ≥ 0.1mm (0.004")
- Test voltage wire-wire: ≥ 500V AC eff.
- Test voltage wire-shield (if a cable with shield is being used): ≥ 500V AC eff.
- Cable inductivity, cable capacity and conductor resistance are to be evaluated in the evidence of intrinsic safety
- Flame-resistant acc. to IEC60332-1-2

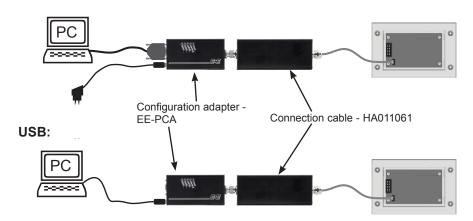
Additional requirements if both channels (CH1, CH2) are connected in a common cable:

- The test voltage wire-wire: must be ≥ 1000V AC eff.
- The radial thickness of the insulation must be ≥ 0.2mm (0.008").
- · The conductor insulation must withstand 500V AC eff.
 - ⇒ Cable ÖLFLEX® EB CY from manufacturer LAPP KABEL meets this requirement on request.

4.2 Terminal assignment EE300Ex

4.3 Configuration adapter

The digital interface is used only for device configuration and customer adjustment. The configurator software and the drivers are available for download free of charge from our website http://www.epluse.com/en/service-support/download-center/.


The EE300Ex in combination with the configurator software is only permitted for use outside the hazard area.

It may only be used the cable with protective circuit (aluminum housing on the 8 pin connector).

Connection from CH1 is NOT required for communication.

RS232 (the external power supply required is included as standard with the configuration adapter):

If the upper housing section of the EE300Ex with the electronics and measurement probe is removed, the lower housing section with the blanking plate (HA011401) should be sealed to protect against dirt and electrostatic charge.

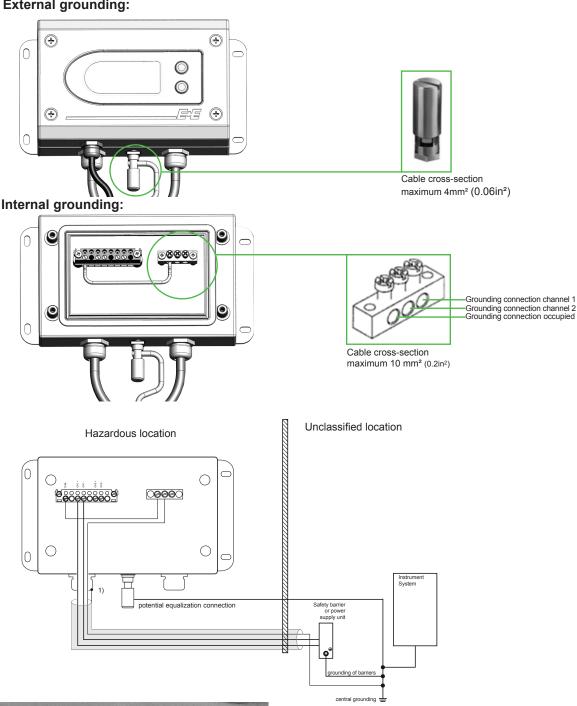
4.4 Calibration of the current loop

Only appropriately approved multimeters are permitted for calibration in hazardous areas. During measurement with these multimeters, ensure that the requirements of the system description (proof of intrinsic safety) remain in force.

4.5 Grounding and potential equalization

The EE300Ex must be integrated into the potential equalization to avoid hazards from electrostatic charges. It shall apply the requirements of the standards EN60079-14, EN60079-25 or IEC60079-14, IEC60079-25. With a remote sensing probe, the probe should also be integrated with the screw connection with a maximum of 1 M Ω in the potential equalization.

The ground conductor or the potential equalization connection must have a cross-section of 4mm² (0.06in²) for the external earthing. With stranded wires, the cable ends should be fitted with suitable wire-end sleeves.

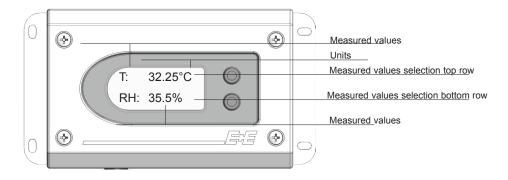

Intrinsically safe barrier ground must be less than 1 ohm.

1)

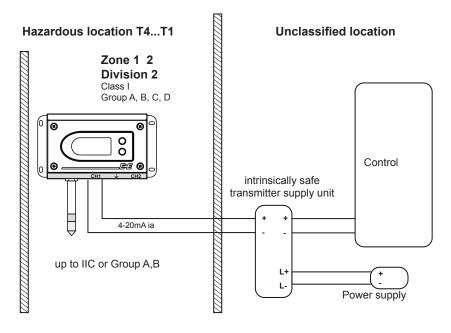
For installation in the U.S. internal earthing should be used. The wire cross-sectional must be in accordance with NEC Section 250.122.

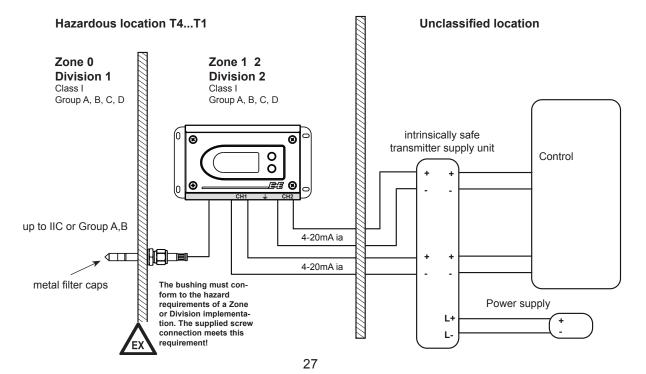
External grounding:

26


wall of the metallic part.

The braided screen should be turned back via the plastic insert on the cable connection. The introduction of the plastic insert presses the braided screen onto the interior


5. DISPLAY (OPTIONAL)


There is no display permitted in the gas hazard area for EPL Ga IIC or Class I, Division 1, Group A, B and in the dust hazard area for IIIA, IIIB and IIIC or Class II, III.

Example of EE300Ex wall mounting in Zone 1 or 2 or Division 2

Example of EE300Ex mounting of remote sensing probe in Zone 0 or Division 1 and transmitter in Zone 1 or 2 or Division 2

6. MAINTENANCE

It is essential that operation and maintenance in explosion hazard areas are only carried out by trained specialist personnel authorised to do so by the system operator.

For maintenance and repair work in explosion hazard areas, the standards EN60079-17 or IEC60079-17, EN60079-19 or IEC60079-19 and the relevant national regulations must be applied.

In the U.S. maintenance and inspection must be carried out in accordance with ANSI / ISA RP12.6.01-2003 and the NEC.

In Canada maintenance and inspection must be carried out in accordance with CEC

6.1 Filter replacement

The protective filter should be cleaned or replaced periodically, in particular whenever it has been noted that the response time has become longer.

When replacing a filter, ensure that the sensor is NOT touching the metallic filter cap!

6.2 Cleaning

6.2.1 Cleaning the display

To clean the display screen, use a damp cloth to avoid static.

6.2.2 Cleaning the sensor

Thanks to the very robust design of the sensor element, any cleaning required is very easy to carry out. This can be carried out using suitable chemicals such as isopropyl alcohol (normal industrial product). After cleaning in isopropyl alcohol, dip the sensor element in water and allow to dry. The cleaning time should not be more than 2 mins. To avoid damaging the sensor layer, the use of mechanical equipment is not permitted!

When screwing on the filter cap, ensure that the sensor is NOT touching the metallic filter cap!

6.3 Customer adjustment of humidity and temperature

See manual EE-PCS (product configuration software)

6.4 Display error messages

Self diagnosis via display (if available):

Error 1 \rightarrow Humidity sensor element damaged Error 2 \rightarrow Humidity sensor element condensation Error 3 \rightarrow Temperature Sensor element damaged

Error 4 → Temperature sensor element short circuit

6.5 Ordering information for accessories

Designation	Order code
Stainless steel sinter filter	HA010103EX
PTFE filter	HA010105
Filter for moisture measurement in oil	HA010110
Stainless steel lattice filter	HA010109
Ball valve ISO 1/2" interior thread with ATEX approval	HA011403
Configuration adapter for connection to the PC	EE-PCA
Connection cable with protective circuit	
between EE300Ex and configuration adapter	HA011061
Blanking plate for lower housing part	HA011401
Protective barrier STAHL 9002/13-280-093-001	HA011410
Intrinsically safe 1-channel power supply device STAHL 9160/13-11-11	HA011405
Intrinsically safe 2-channel power supply device STAHL 9160/23-11-11	HA011406
Sealing plug for unused cable screw connection - M16 (8mm (0.31"))	HA011402

Sealing plug for unused cable screw connection - M20 (12mm (0.47")) HA011404 Mounting flange 12mm (0.24") HA010201 Mounting flange 6mm (0.24") HA010207 1/2" ISO screw connection 12mm (0.47") HA011102 1/2" NPT screw connection 12mm (0.47") HA011103 1/2" welded connection 12mm (0.47") HA011109 1/2" ISO screw connection 6mm (0.24") HA011104 1/2" NPT screw connection 6mm (0.24") HA011105 O-ring for sliding fitting HA050308 sensor retraction tool 250 bar ZM-WA-025-040-EST sensor retraction tool 40 bar BG-WA-103-045-EST

7. TECHNICAL DATA - EE300EX-HT

Measuring values

Relative humidity

Humidity sensor¹⁾ HC1000 Measuring range¹⁾ 0...100% RH Accuracy²⁷ (including hysteresis, non-linearity and repeatability, traceable to international standards, administrated by NIST, PTB, BEV...) -15...40°C (5...104°F) ≤90% RH ± (1.3 + 0.3%*mv) % RH -15...40°C (5...104°F) >90% RH ± 2.3% RH -25...70°C (-13...158°F) ± (1.4 + 1%*mv) % RH -40...180°C (-40...356°F) ± (1.5 + 1.5%*mv) % RH Temperature dependence electronics typ. 0.03% RH/°C Response time with filter at 20°C (68°F) / t₉₀ < 30 sec. **Temperature** Temperature sensor Pt1000 (Tolerance class A, DIN EN 60751) Measuring range sensor head -40...60°C (-40...140°F) wall mounting: -40...180°C (-40...356°F) remote sensing probe: Accuracy

2: -40...180°C (-40...356°F)

ı	empera	ture c	lepend	lence	ot e	electronic	S

typical 0.005 °C/°C

Max. selectable Scaling Range

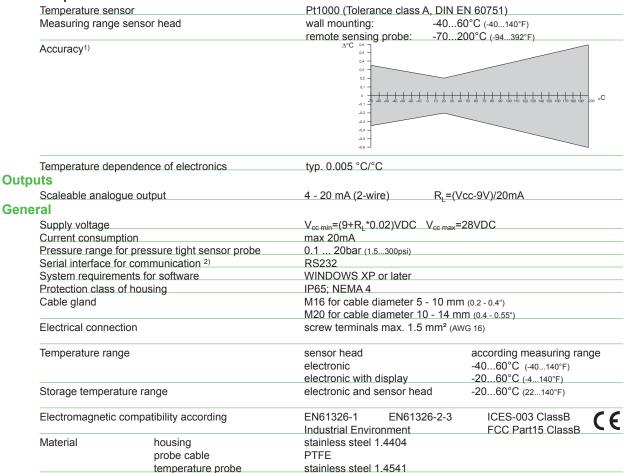
		from	to		unit	
			wall mounting	remote sensing probe		
Dew/Frost point temp.	Td	-40 (-40)	60 (140)	100 (212)	°C	(°F)
Wet bulb temperature	Tw	0 (32)	60 (140)	100 (212)	°C	(°F)
Water vapour pressure	е	0 (0)	200 (3)	1100 (15)	mbar	(psí)
Mixing ratio	r	0 (0)	425 (2900)	999 (9999)	g/kg	(gr/lb)
Absolute humidity	dv	0 (0)	150 (60)	700 (300)	g/m³	(gr/ft ³)
Specific enthalpy	Н	-50 (-15000)	400 (150000)	2800 (999999)	kJ/kg	(Btu/lb)
Water activity	aw	0 ` ′		_1	[]	
Water content	X	0	-	100000	[ppm]	

Outputs

Gene

uts					
freely selectable and scalable outputs		2 x 4 - 20 mA (2-wire) galvanically isolated R _L =(Vcc-9V)/20mA Output 1 (CH1) must be connected!			
eral					
Supply voltage		V _{cc min} =(9+R ₁ *0.02)VDC V _{cc max} =28	SVDC		
Current consum	ption	max 20mA per channel			
Pressure range	for pressure tight sensor probe	refer to model			
Serial interface t	for communication 3)	RS232			
System requirer	nents for software	WINDOWS XP or later			
Protection class	of housing	IP65; NEMA 4			
Cable gland	_	M16 for cable diameter 5 - 10 mm (0.2 - 0.4")		
		M20 for cable diameter 10 - 14 mm	(0.4 - 0.55")		
Electrical conne	ction	screw terminals max. 1.5 mm ² (AWG	16)		
Temperature ran	nge	sensor head	according measuring range		
		electronic	-4060°C (-40140°F)		
		electronic with display	-2060°C (-4140°F)		
Storage temperature range		electronic and sensor head	-2060°C (22140°F)		
Electromagnetic compatibility according		EN61326-1 EN61326-2-3	ICES-003 ClassB		
		Industrial Environment	FCC Part15 ClassB		
Material	Housing	Stainless Steel 1.4404			
	Probe cable	PTFE			
	Probe (without Filter)	Stainless Steel			

¹⁾ Refer to the working range of the humidity sensor.


²⁾ The accuracy statement includes the uncertainty of the factory calibration with an enhancement factor k=2 (2-times standard deviation). The accuracy was calculated in accordance with EA-4/02 and with regard to GUM (Guide to the Expression of Uncertainty in Measurement)

³⁾ Configuration adapter EE-PCA and cabel HA011061 necessary.

8. TECHNICAL DATA - EE300EX-xT

Measuring values

Temperature

¹⁾ The accuracy statement includes the uncertainty of the factory calibration with an enhancement factor k=2 (2-times standard deviation).

The accuracy was calculated in accordance with EA-4/02 and with regard to GUM (Guide to the Expression of Uncertainty in Measurement).

²⁾ Configuration adapter EE-PCA and cabel HA011061 necessary.

EC Type Examination Certificate (1)

Product Service

- (2)Equipment and Protective Systems Intended for Use in Potentially Explosive Atmospheres - Directive 94/9/EC
- (3)EC Type Examination Certificate Number:

TPS 13 ATEX 38892 003 X

(4) Equipment: Humidity and Temperature Transmitter Type: EE300Ex

Manufacturer: E+E Elektronik Ges.m.b.H. (5)(6)Address: Langwiesen 7, 4209 Engerwitzdorf, Austria

This equipment and any acceptable variation thereto are specified in the schedule to this

- (7)certificate and the documents therein referred to
- TÜV SÜD Product Service GmbH, notified body No. 0123 in accordance with Article 9 of the Council Directive 94/9/EC of March 23rd 1994, certifies that this equipment has been (8)found to comply with the Essential Health and Safety Requirements relating to the design and construction of equipment and protective systems intended for use in potentially explosive atmospheres, given in Annex II of the Directive. The examination and test results are recorded in the confidential report 71386133
- Compliance with the Essential Health and Safety Requirements has been assured by (9) compliance with:

EN 1127-1:2011

EN 60079-11:2007

EN 60079-0:2009

EN 61241-11:2006

- (10)If the sign "X" is placed after the certificate number, it indicates that the equipment is subject to special conditions for safe use specified in the schedule to this certificate.
- (11)This EC Type Examination Certificate relates only to the design and the construction of the specified equipment in accordance with Directive 94/9/EC. Further requirements of this Directive apply to the manufacture and supply of this equipment.
- The marking of the equipment shall include the following: (12)

Equipment:

(ξx) II 1G Ex ia IIC T4 Ga (ξx) II 1D Ex ia IIIC T 70°C Da IP65

Equipment with Display: (Ex) II 2 G Ex ia IIC T4 Gb (Ex) II 1G Ex ia IIB T4 Ga

Sensor:

Certification body

Stuttgart, 05.03.2013

Andres Pfeil

EC Type Examination Certificate without signature and official stamp shall not be valid. The certificates may be circulated only without alteration. Extracts or alterations are subject to approval by TÜV SÜD Product Service GmbH. In case of dispute, the German text shall prevail.

(Document no.: TPS 13 ATEX 38892 003 X)

The document is internally administrated under the following number: EX5 13 02 38892 003

TÜV SÜD Product Service GmbH · Zertifizierstelle · Ridlerstraße 65 · 80339 München · Germany

Schedule (13)

EC Type Examination Certificate TPS 13 ATEX 38892 003 X (14)

(15)**Description of equipment:**

The humidity and temperature transmitter EE300Ex is dedicatet for use in industrial applications. The transmitter is available as a fixed install or with remote sensing probe. The EE300Ex transmitter ist to be powered by an intrinsically safe power source.

Technical and electrical data:

Transmitter EE300Ex	Kenndaten
Input voltage (Ui)	28 V
Input power (Pi)	700 mW
Input current (li)	100 mA
Input capacitance (Ci)	2,2 nF
Input inductance (Li)	negligible small
protection category of equipment	IP65
Temperature range electronics	-40 ≤ Tamb ≤ +60°C
Temperature range for humidity and temperature probe	-40 ≤ Tamb ≤ +180°C
Temperature range for temperature probe	-70 ≤ Tamb ≤ +200°C

(16)Test report: 71386133

(17)Special conditions for safe use:

The EE300Ex transmitter with display may not be used in areas with explosive dust (IIIA,IIIB,IIIC).

The EE300Ex transmitter may only be operated with safety barriers.

In case of using both measurement channels, each channel must be driven separately via their own galvanic safety barriers.

For the use oft he EE300Ex transmitter with remote probe in explosive area zone 0 the probe cable must be installed in a metallic, grounded protective tube.

The plastic filter-cap may not be used in explosive area zone 0 with chemicals of the explosion group IIC.

EC Type Examination Certificate without signature and official stamp shall not be valid. The certificates may be circulated only without alteration. Extracts or alterations are subject to approval by TÜV SÜD Product Service GmbH. In case of dispute, the German text shall prevail. (Document no.: TPS 13 ATEX 38892 003 X)

The document is internally administrated under the following number: EX5 13 02 38892 003

TÜV SÜD Product Service GmbH · Zertifizierstelle · Ridlerstraße 65 · 80339 München · Germany

 $\text{T\"UV}^{\text{\tiny{\it I\!B}}}$

CERTIFICAT

A1 / 04.11

Product Service

The EE300Ex transmitter with the connector option may not be used in areas wit explosive dust (IIIA,IIIB,IIIC) and in explosive area zone 0 with chemicals of the explosion group IIC.

(18) Essential health and safety requirements:

met by standards

Certification body

Andreas Pfeil

Stuttgart, 05.03.2013

Page 3/3

EC Type Examination Certificate without signature and official stamp shall not be valid. The certificates may be circulated only without alteration. Extracts or alterations are subject to approval by TÜV SÜD Product Service GmbH. In case of dispute, the German text shall prevail.

(Document no.: TPS 13 ATEX 38892 003 X)

The document is internally administrated under the following number: EX5 13 02 38892 003

TÜV SÜD Product Service GmbH · Zertifizierstelle · Ridlerstraße 65 · 80339 München · Germany

TÜV®

1. Supplement to the EC Type Examination Certificate

(1) EC Type Examination Certificate Number:

TPS 13 ATEX 38892 003 X

(2)	Equipment:	Humidity and Temperature Transmitter Type: EE300Ex
-----	------------	--

(3)Manufacturer: E+E Elektronik Ges.m.b.H. (4) Address: Langwiesen 7, 4209 Engerwitzdorf, Austria

(5)Description: The humidity and temperature transmitter EE300Ex is dedicated

for use in industrial applications. The transmitter is available with

fix installed or with remote sensing probe.

The humidity and temperature transmitter must be powered by an intrinsically safe power source, which shall be compatible with

EE300Ex according to the entity concept.

EE300Ex configuration and adjustment can be done using the E+E

Product Configuration Adapter HA011061

(6)Supplement: Standard update to EN 60079-11:2012; Specification of

temperature working range for the combined humidity and

temperature probe and for the temperature probe.

Test 1: Total immersion in dust according to EN 60079-11:2012

paragraph 5.6.5

Test 2: Requirements for the E+E Product Configuration Adapter type

HA011061 according to EN 60079-11:2012

Test 3: Approval of the silicone foam gasket for the enclosure

(7)Test results: The examination and test results are recorded in the confidential

reports 713031470, 713030081 and 713038637.

(8) The compliance with the Essential Health and Safety Requirements is fulfilled according to:

EN 1127-1:2011

EN 60079-11:2012

EN 60079-0:2012

Page 1 / 2

EC Type Examination Certificate without signature and official stamp shall not be valid. The certificates may be circulated only without alteration. Extracts or alterations are subject to approval by TÜV SÜD Product Service GmbH. In case of dispute, the German text shall prevail. (Document no.: TPS 13 ATEX 38892 003 X) The document is internally administrated under the following number: EX5 13 01 38892 003

TÜV SÜD Product Service GmbH · Zertifizierstelle · Ridlerstraße 65 · 80339 München · Germany

TÜV®

A1 / 04.11

Product Service

Working temperature range for the probes:

Specification of the temperature class "TKG" for use in gas area exposed to explosion hazards and "TKD" for use in dust area exposed to explosion hazards as a function of the ambient temperature "Tamb" for the humidity and temperature probe and the temperature

TKG	TKD	Humidity and Temperature Probe	TKG	TKD	Temperature Probe
Т6	80°C	-40°C ≤ Tamb ≤ +60°C	T6	80°C	-70°C ≤ Tamb ≤ +60
T5	95°C	-40°C ≤ Tamb ≤ +75°C	T5	95°C	-70°C ≤ Tamb ≤ +75°C
T4	130°C	-40°C ≤ Tamb ≤ +110°C	T4	130°C	-70°C ≤ Tamb ≤ +110°C
Т3	195°C	-40°C ≤ Tamb ≤ +175°C	Т3	195°C	-70°C ≤ Tamb ≤ +175°C
T2	200°C	-40°C ≤ Tamb ≤ +180°C	T2	220°C	-70°C ≤ Tamb ≤ +200°C
T1	200°C	-40°C ≤ Tamb ≤ +180°C	T1	220°C	-70°C ≤ Tamb ≤ +200°C

(9)The mark of the equipment shall include the following:

Equipment: (Ex) II 1G Ex ia IIC T4 Ga

(Ex) II 1D Ex ia IIIC T 80°C Da

Equipment with Display: (Ex) II 2G Ex ia IIC T4 Gb (Ex) II 1G Ex ia IIB T4 Ga

(10)Additional special conditions for safe use:

The EE300Ex transmitter with display may not be used in areas with explosive dust (IIIA, IIIB, IIIC) and in gas explosive area zone 0 with group IIC.

To prevent electrostatic charges the remote probe body must be earthed with maximum

If EE300Ex is located outside the explosive area, following parameters apply:

For connection at plug X47, pin 2,3,4 against pin 1:

maximum voltage: Um = ± 28 V

maximum current: Im = ± 100 mA

or alternatively

connection via E+E Product Configuration Adapter HA011061.

(Certification Body for Explosion Protection)

Michael Reusonel

Filderstadt, 28.04.2014

Page 2 / 2

EC Type Examination Certificate without signature and official stamp shall not be valid. The certificates may be circulated only without alteration.

Extracts or alterations are subject to approval by TÜV SÜD Product Service GmbH. In case of dispute, the German text shall prevail. (Document no.: TPS 13 ATEX 38892 003 X)

The document is internally administrated under the following number: EX5 13 01 38892 003

TÜV SÜD Product Service GmbH · Zertifizierstelle · Ridlerstraße 65 · 80339 München · Germany

TÜV®

10. EC DECLARATION OF CONFORMITY

EU - DECLARATION OF CONFORMITY

(According to ISO/IEC 17050-1)

Product(s) Type From Version:		Measure:	Output signal:	
EE300Ex-HTyyy	201107_1	humidity / dewpoint /	4-20mA	
EE300Ex-xTyyy	201108_1	water activity /		
yyy order code	201115_1	temperature		

E+E ELEKTRONIK Ges.m.b.H Langwiesen7 4209 Engerwitzdorf / AUSTRIA

EC-TYPE-EXAMINATION CERTIFICATE:

TPS 13 ATEX 38892 003 X

EE300Ex without display: II 1G Ex ia IIC T4 Ga II 1D Ex ia IIIC T80°C Da EE300Ex with display: II 2G Ex ia IIB T4 Gb II 1G Ex ia IIC T4 Ga

EE300Ex remote probe: II 1G Ex ia IIC T6-T1 Ga II 1D Ex ia IIIC T80°C...220°C Da

The EC-Type-Examination was issued by TÜV SÜD Product Service GmbH (notified body No 0123), Ridlerstraße 65, 80339 München / Germany.

We declare under our sole responsibility that these products (see product table above) correspond to the following regulations and their subsequent modifications:

Directive Ref.	Directive area
2014/30/EU	Electromagnetic compatibility
2014/34/EU	Equipment and protective systems in potentially explosive
	atmospheres
2011/65/EU	RoHS

The products conform with the following standards or standardized documents:

Standard	Year of ratification	Standard	Year of ratification
EN 1127-1	2011	EN 61326-1	2013
EN 60079-0	2012 / A11:2013	EN 61326-2-3	2013
EN 60079-11	2012	EN 50581	2012

Designed for use in industrial environment.

Affixing of the CE marking (for the first time): 2013

Test Report: Conformity_EE300Ex_03.docx

Modification: Directive update

Engerwitzdorf, April 20th, 2016

DI Timelthaler Wolfgang (business manager)

Birklbauer Martin (Ex-authorised person)

File: Declaration of conformity EE300Ex_02.docx

11. IECEX CERTIFICATE OF CONFORMITY - COC

for more information see http://www.iecex.com/ or our website http://www.epluse.com/ee300ex

CERTIFICATE OF CONFORMITY

1. HAZARDOUS (CLASSIFIED) LOCATION ELECTRICAL EQUIPMENT PER US REQUIREMENTS

2. Certificate No:

FM17US0302X

3. Equipment:

EE300Ex-series

(Type Reference and Name)

Address of Listing Company:

Humidity and Temperature Transmitter

4. Name of Listing Company:

E+E ELEKTRONIK Ges.m.b.H

La

Langwiesen 7
Engerwitzdorf 4209

Austria

6. The examination and test results are recorded in confidential report number:

3049300 dated 2nd October 2017

7. FM Approvals LLC, certifies that the equipment described has been found to comply with the following Approval standards and other documents:

FM Class 3600:2011, FM Class 3610:2015, FM Class 3611:2016, FM Class 3810:2005, ANSI/ISA 61010-1:2012, ANSI/ISA 60079-0:2013, ANSI/ISA 60079-11:2014, ANSI/IEC 60529:2004

- 8. If the sign 'X' is placed after the certificate number, it indicates that the equipment is subject to specific conditions of use specified in the schedule to this certificate.
- 9. This certificate relates to the design, examination and testing of the products specified herein. The FM Approvals surveillance audit program has further determined that the manufacturing processes and quality control procedures in place are satisfactory to manufacture the product as examined, tested and Approved.
- 10. Equipment Ratings:

Intrinsically Safe for Class I, II, III Division 1, Groups A, B, C, D, E, F, and G hazardous (classified) locations in accordance with drawing M1_1309080, Nonincendive for Class I, II, III Division 2, Groups A, B, C, D, E, F, and G hazardous (classified) locations, Intrinsically Safe for Class I, Zone 0, Group IIC hazardous (classified) locations in accordance with drawing M1_1309080, Intrinsically Safe for Class II and III, Zone 20, Group IIIC hazardous (classified) locations in accordance with drawing M1_1309080, IP65 with an ambient temperature

Certificate issued by:

30 November 2017

Page 1 of 7

Date

J. Æ. Marquedant

VP, Manager, Electrical Systems

To verify the availability of the Approved product, please refer to www.approvalguide.com

THIS CERTIFICATE MAY ONLY BE REPRODUCED IN ITS ENTIRETY AND WITHOUT CHANGE

FM Approvals LLC. 1151 Boston-Providence Turnpike, Norwood, MA 02062 USA
T: +1 (1) 781 762 4300 F: +1 (1) 781 762 9375 E-mail: information@fmapprovals.com www.fmapprovals.com

F 347 (Mar 16)

US Certificate Of Conformity No: FM17US0302X

rating of -40°C to +60°C.

11. The marking of the equipment shall include:

Equipment Group I: EE300Ex without display

Class I, II, III, Division 1, Groups A, B, C, D, E, F and G; T4 Ta = -40°C to +60°C; Entity - M1_139080; IP65

Class I, II, III, Division 2, Groups A, B, C, D, E, F and G; T4 Ta = -40°C to +60°C

Class I, Zone 0, AEx ia IIC T4 Ta = -40° C to $+60^{\circ}$ C Ga; Entity – M1_139080; IP65

Zone 20, AEx ia IIIC T131°C Ta = -40°C to +60°C Da; Entity - M1 139080; IP65

Remote Probe:

Class I, II, III, Division 1, Groups A, B, C, D, E, F and G; T6...T1; Entity - M1_139080; IP65

Class I, II, III, Division 2, Groups A, B, C, D, E, F and G; T6...T1

Class I, Zone 0, AEx ia IIC T6...T1 Ga; Entity - M1_139080; IP65

Zone 20, AEx ia IIIC T80°C Da; Entity - M1_139080; IP65

Equipment Group II: EE300Ex with display

Class I, Division 1, Groups C, and D; T4 Ta = -40°C to +60°C; Entity - M1_139080

Class I, Division 2, Groups A, B, C and D; T4 Ta = -40°C to +60°C; Entity – M1 139080

Class I, Zone 0, AEx ia IIB T4 Ta = -40° C to $+60^{\circ}$ C Ga; Entity – M1 139080

Class I, Zone 1, AEx ia IIC T4 $^{\circ}$ C Ta = -40 $^{\circ}$ C to +60 $^{\circ}$ C Gb; Entity – M1_139080

Remote Probe:

Class I, II, III, Division 1, Groups A, B, C, D, E, F and G; T6...T1; Entity – M1_139080; IP65

Class I, II, III, Division 2, Groups A, B, C, D, E, F and G; T6...T1

Class I, Zone 0, AEx ia IIC T6...T1 Ga; Entity - M1_139080; IP65

Zone 20, AEx ia IIIC T80°C Da; Entity - M1_139080; IP65

12. Description of Equipment:

General - The EE300Ex transmitter is designed for gauge measurements of temperature and humidity in air. All signal outputs are available on two 4 to 20 mA analog outputs.

Construction - The EE300Ex transmitter consists of a single compartment electronics housing. The enclosure is of stainless steel and has an integrated or remote humidity and/or temperature sensor.

The EE300Ex transmitter is designed for use with the Product Configuration Adapter (PCA) HA011061 in non-hazardous locations for software configuration.

THIS CERTIFICATE MAY ONLY BE REPRODUCED IN ITS ENTIRETY AND WITHOUT CHANGE

FM Approvals LLC. 1151 Boston-Providence Turnpike, Norwood, MA 02062 USA
T: +1 (1) 781 762 4300 F: +1 (1) 781 762 9375 E-mail: information@fmapprovals.com www.fmapprovals.com

F 347 (Mar 16) Page 2 of 7

US Certificate Of Conformity No: FM17US0302X

Ratings - The EE300Ex transmitter operates at 6.4-28 Vdc (700mW). The transmitters are rated for use in an ambient temperature range of -40°C to +60°C. The transmitter probe is rated for use in a process temperature range of -70°C to +200°C.

Equipment Group I: EE300Ex without display

EE300EX-HT6SAxaxxxbcFMde

- a = Electrical Connection; B, C, F, G, H, I, V, W, X or Y
- b = Filter; C, D, E, I, J, K, L or M
- c = Sensor Protection; x or 1
- d = Special option; Blank or Gx
- e = Software Code: 11 Digits (Not Safety Relevant)

Entity parameters:

Terminals	Vmax or Ui	lmax or li	Pi	Li	Ci
CH 1: + and -	6.4Vdc ≤ Ui ≤28Vdc	100mA	0.7W	0mH	2.2nF
CH 2: + and -	6.4Vdc ≤ Ui ≤28Vdc	100mA	0.7W	0mH	2.2nF

EE300EX-HT6SaxbcdefgFMhi

- a = Model; E, M, S or U
- b = Electrical Connection; B, C, F, G, H, I, V, W, X or Y
- c = Probe Cable Length; A, B, C, E, F, G or H
- d = Probe Length; C, D, F, G, H, J, K or L e = Zone Feedthrough (probe fitting): x, A, B, C, F, H or D
- f = Filter; C, D, E, I, J, K, L or M
- g = Sensor Protection; x or 1
- h = Special option; Blank or Gx
- i = Software Code: 11 Digits (Not Safety Relevant)

Entity parameters:

Terminals	Vmax or Ui	Imax or li	Pi	Li	Ci
CH 1: + and -	6.4Vdc ≤ Ui ≤28Vdc	100mA	0.7W	0mH	2.2nF
CH 2: + and -	6.4Vdc ≤ Ui ≤28Vdc	100mA	0.7W	0mH	2.2nF

Remote probe - Temperature Code:

T-Code	Ambient Temperature
T6	-40°C < Ta < 60°C
T5	-40°C < Ta < 75°C
T4	-40°C < Ta < 110°C
T3	-40°C < Ta < 175°C
T2	-40°C < Ta < 180°C
T1	-40°C < Ta < 180°C

THIS CERTIFICATE MAY ONLY BE REPRODUCED IN ITS ENTIRETY AND WITHOUT CHANGE

FM Approvals LLC. 1151 Boston-Providence Turnpike, Norwood, MA 02062 USA T: +1 (1) 781 762 4300 F: +1 (1) 781 762 9375 E-mail: <u>information@fmapprovals.com</u> <u>www.fmapprovals.com</u>

F 347 (Mar 16) Page 3 of 7

US Certificate Of Conformity No: FM17US0302X

EE300EX-xT6SAxaxxxFMb

a = Electrical Connection; B, C, F, G, H, I, V, W, X or Y b = Software Code: 6 Digits (Not Safety Relevant)

Entity parameters:

pa.a					
Terminals	Vmax or Ui	Imax or li	Pi	Li 👊	Ci
CH 1: + and -	6.4Vdc ≤ Ui ≤28Vdc	100mA	0.7W	0mH	2.2nF
CH 2: + and -	6.4Vdc ≤ Ui ≤28Vdc	100mA	0.7W	0mH	2.2nF

EE300EX-xT6SaxbcdeFMf

a = Model; H

b = Electrical Connection; B, C, F, G, H, I, V, W, X or Y c = Probe – Cable Length; A, B, C, E, F, G or H

d = Probe length; E

e = Zone Feedthrough (probe fitting): x, I or J

f = Software Code: 6 Digits (Not Safety Relevant)

Entity parameters:

Terminals	S	Vmax or Ui		Imax or li	Pi	Li	Ci		
CH 1: + ai	nd -	6.4Vdc ≤ Ui	≤28Vdc	100mA	0.7W	0mH	2.2nF	 	
CH 2: + ai	nd -	6.4Vdc ≤ Ui	≤28Vdc	100mA	0.7W	0mH	2.2nF		
				/ /					\ \
Remote pr	obe -	Temperature	e Code:						
T-Code	Am	bient Tempe	erature						
T6	-70°	°C < Ta < 60°	Č.						

T-Code	Ambient Temperature
T6	-70°C < Ta < 60°C
T5	-70°C < Ta < 75°C
T4	-70°C < Ta < 110°C
T3	-70°C < Ta < 175°C
T2	-70°C < Ta < 200°C
T1	-70°C < Ta < 200°C

FM Approvals

THIS CERTIFICATE MAY ONLY BE REPRODUCED IN ITS ENTIRETY AND WITHOUT CHANGE

FM Approvals LLC. 1151 Boston-Providence Turnpike, Norwood, MA 02062 USA T: +1 (1) 781 762 4300 F: +1 (1) 781 762 9375 E-mail: <u>information@fmapprovals.com</u> <u>www.fmapprovals.com</u>

F 347 (Mar 16) Page 4 of 7

US Certificate Of Conformity No: FM17US0302X

Equipment Group II: EE300Ex with display

EE300EX-HT6SADaxxxbcFMde

a = Electrical Connection; B, C, F, G, H, I, V, W, X or Y

b = Filter; C, D, E, I, J, K, L or M

c = Sensor Protection; x or 1

d = Special option; Blank or Gx

e = Software Code: 11 Digits (Not Safety Relevant)

Entity parameters:

Entity paramete	10.				
Terminals	Vmax or Ui	Imax or li	Pi	Z	Ci
CH 1: + and -	6.4Vdc ≤ Ui ≤28Vdc	100mA	0.7W	0mH	2.2nF
CH 2: + and -	6.4Vdc ≤ Ui ≤28Vdc	100mA	0.7W	0mH	2.2nF

EE300EX-HT6SaDbcdefgFMhi

a = Model; E, M, S or U

b = Electrical Connection; B, C, F, G, H, I, V, W, X or Y

c = Probe - Cable Length; A, B, C, E, F, G or H

d = Probe Length; C, D, F, G, H, J, K or L

 $\label{eq:constraints} \begin{array}{l} e = Zone \; Feedthrough \; (probe \; fitting) : x, \; A, \; B, \; C, \; F, \; H \; or \; D \\ f = Filter; \; C, \; D, \; E, \; I, \; J, \; K, \; L \; or \; M \end{array}$

g = Sensor Protection; x or 1

h = Special option; Blank or Gx

i = Software Code: 11 Digits (Not Safety Relevant)

Entity parameters:

Terminals	Vmax or Ui	Imax or li	Pi	Li	Ci
CH 1: + and -	6.4Vdc ≤ Ui ≤28Vdc	100mA	0.7W	0mH	2.2nF
CH 2: + and -	6.4Vdc ≤ Ui ≤28Vdc	100mA	0.7W	0mH	2.2nF

Remote probe - Temperature Code:

T-Code	Ambient Temperature
T6	-40°C < Ta < 60°C
T5	-40°C < Ta < 75°C
T4	-40°C < Ta < 110°C
T3	-40°C < Ta < 175°C
T2	-40°C < Ta < 180°C
T1	-40°C < Ta < 180°C

Approvals

THIS CERTIFICATE MAY ONLY BE REPRODUCED IN ITS ENTIRETY AND WITHOUT CHANGE

FM Approvals LLC. 1151 Boston-Providence Turnpike, Norwood, MA 02062 USA T: +1 (1) 781 762 4300 F: +1 (1) 781 762 9375 E-mail: <u>information@fmapprovals.com</u> <u>www.fmapprovals.com</u>

F 347 (Mar 16) Page 5 of 7

US Certificate Of Conformity No: FM17US0302X

EE300EX-xT6SADaxxxFMb

a = Electrical Connection; B, C, F, G, H, I, V, W, X or Y b = Software Code: 6 Digits (Not Safety Relevant)

Entity parameters:

Littly paramoto	10.				
Terminals	Vmax or Ui	Imax or li	Pi	Į.	Ci
CH 1: + and -	6.4Vdc ≤ Ui ≤28Vdc	100mA	0.7W	0mH	2.2nF
CH 2: + and -	6.4Vdc ≤ Ui ≤28Vdc	100mA	0.7W	0mH	2.2nF

EE300EX-xT6SaDbcdeFMf

a = Model; H

b = Electrical Connection; B, C, F, G, H, I, V, W, X or Y

c = Probe - Cable Length; A, B, C, E, F, G or H

d = Probe length; E

e = Zone Feedthrough (probe fitting): x, I or J

f = Software Code: 6 Digits (Not Safety Relevant)

Entity parameters:

Terminals	Vmax or Ui	lmax or li	Pi	Li	Ci		
CH 1: + and	d - 6.4Vdc ≤ Ui ≤28Vdc	100mA	0.7W	0mH	2.2nF		
CH 2: + and	d - 6.4Vdc ≤ Ui ≤28Vdc	100mA	0.7W	0mH	2.2nF		
		1/1 /					- N
Remote prob	pe - Temperature Code:	\ <i>I</i>					
T-Code	Ambient Temperature	<i>u i i</i>					
T6 -	-70°C < Ta < 60°C						

T-Code	Ambient Temperature
T6	-70°C < Ta < 60°C
T5	-70°C < Ta < 75°C
T4	-70°C < Ta < 110°C
T3	-70°C < Ta < 175°C
T2	-70°C < Ta < 200°C
T1	-70°C < Ta < 200°C

13. Specific Conditions of Use:

Equipment Group I: EE300Ex without display

- 1. Filter options C, E, J, K and L are not allowed in Groups A or B for Division 1 and EPL Ga IIC for Zone 0.
- 2. The EE300Ex Remote Probe is approved for in air applications only.
- 3. The serial software configuration port of the EE300EX may only be used with the Product Configuration Adapter HA011061.

Equipment Group II: EE300Ex with display

- 1. The EE300Ex Remote Probe is approved for in air applications only.
- 2. The serial software configuration port of the EE300EX may only be used with the Product Configuration Adapter HA011061.

THIS CERTIFICATE MAY ONLY BE REPRODUCED IN ITS ENTIRETY AND WITHOUT CHANGE

FM Approvals LLC. 1151 Boston-Providence Turnpike, Norwood, MA 02062 USA T: +1 (1) 781 762 4300 F: +1 (1) 781 762 9375 E-mail: <u>information@fmapprovals.com</u> <u>www.fmapprovals.com</u>

F 347 (Mar 16) Page 6 of 7

US Certificate Of Conformity No: FM17US0302X

14. Test and Assessment Procedure and Conditions:

This Certificate has been issued in accordance with FM Approvals US Certification Requirements.

15. Schedule Drawings

A copy of the technical documentation has been kept by FM Approvals.

16. Certificate History

Details of the supplements to this certificate are described below:

Date	Description			
2 nd October 2017	Original Issue.			
30 th November 2017	Supplement 2: Report Reference: – RR211141 datwed 30th November 2017. Description of the Change: Updated standard editions to the latest revisions, added options for electrical connections, added option for probe fitting and converted pertificate to new format.			
	LIM Whhinage			

FM Approvals

THIS CERTIFICATE MAY ONLY BE REPRODUCED IN ITS ENTIRETY AND WITHOUT CHANGE

FM Approvals LLC. 1151 Boston-Providence Turnpike, Norwood, MA 02062 USA
T: +1 (1) 781 762 4300 F: +1 (1) 781 762 9375 E-mail: information@fmapprovals.com www.fmapprovals.com

F 347 (Mar 16) Page 7 of 7

CERTIFICATE OF CONFORMITY

1. HAZARDOUS LOCATION ELECTRICAL EQUIPMENT PER CANADIAN REQUIREMENTS

2. Certificate No:

FM17CA0154X

3. **Equipment:**

EE300Ex-series

(Type Reference and Name)

Humidity and Temperature Transmitter

4. Name of Listing Company:

E+E ELEKTRONIK Ges.m.b.H

5. Address of Listing Company:

Langwiesen 7 Engerwitzdorf 4209 Austria

The examination and test results are recorded in confidential report number:

3049300 dated 2nd October 2017

7. FM Approvals LLC, certifies that the equipment described has been found to comply with the following Approval standards and other documents:

CSA-C22.2 No. 0-M91:R2006, CSA-C22.2 No. 142-M1987:R2004, CSA-C22.2 No. 157-92:2016, CSA-C22.2 No. 213:2015, CSA-C22.2 No. 60529:R2010, CAN/CSA-C22.2 No. 60079-0:2015, CAN/CSA-C22.2 No. 60079-11:2014, CAN/CSA-C22.2 No. 61010-1:2012

- 8. If the sign 'X' is placed after the certificate number, it indicates that the equipment is subject to specific conditions of use specified in the schedule to this certificate.
- 9. This certificate relates to the design, examination and testing of the products specified herein. The FM Approvals surveillance audit program has further determined that the manufacturing processes and quality control procedures in place are satisfactory to manufacture the product as examined, tested and Approved.
- 10. Equipment Ratings:

Intrinsically Safe for Class I, II, III Division 1, Groups A, B, C, D, E, F, and G hazardous locations in accordance with drawing M1_1309080, Nonincendive for Class I, II, III Division 2, Groups A, B, C, D, E, F, and G hazardous locations, Intrinsically Safe for Class I, Zone 0, Group IIC hazardous locations in accordance with drawing M1_1309080, Intrinsically Safe for Class II and III, Zone 20, Group IIIC hazardous locations in accordance with

Certificate issued by:

30 November 2017

J.Æ. Marquedant

VP, Manager, Electrical Systems

To verify the availability of the Approved product, please refer to www.approvalguide.com

THIS CERTIFICATE MAY ONLY BE REPRODUCED IN ITS ENTIRETY AND WITHOUT CHANGE

FM Approvals LLC. 1151 Boston-Providence Turnpike, Norwood, MA 02062 USA
T: +1 (1) 781 762 4300 F: +1 (1) 781 762 9375 E-mail: information@fmapprovals.com www.fmapprovals.com

F 348 (Mar 16) Page 1 of 7

Canadian Certificate Of Conformity No: FM17CA0154X

drawing M1_1309080, IP65 with an ambient temperature rating of -40°C to +60°C.

11. The marking of the equipment shall include:

Equipment Group I: EE300Ex without display

Class I, II, III, Division 1, Groups A, B, C, D, E, F and G; T4 Ta = -40°C to +60°C; Entity - M1_139080; IP65

Class I, II, III, Division 2, Groups A, B, C, D, E, F and G; T4 Ta = -40°C to +60°C

Zone 0, Ex ia IIC T4 Ta = -40°C to +60°C Ga; Entity - M1 139080; IP65

Zone 20, Ex ia IIIC T131°C Ta = -40°C to +60°C Da; Entity - M1 139080; IP65

Remote Probe:

Class I, II, III, Division 1, Groups A, B, C, D, E, F and G; T6...T1; Entity - M1_139080; IP65

Class I, II, III, Division 2, Groups A, B, C, D, E, F and G; T6...T1

Zone 0, Ex ia IIC T6...T1 Ga; Entity - M1_139080; IP65

Zone 20, Ex ia IIIC T80°C Da; Entity - M1_139080; IP65

Equipment Group II: EE300Ex with display

Class I, Division 1, Groups C, and D; T4 Ta = -40°C to +60°C; Entity – M1_139080

Class I, Division 2, Groups A, B, C and D; T4 Ta = -40°C to +60°C; Entity - M1 139080

Zone 0, Ex ia IIB T4 Ta = -40°C to +60°C Ga; Entity – M1_139080

Zone 1, Ex ia IIB T4 Ta = -40° C to $+60^{\circ}$ C Gb; Entity - M1_139080

Remote Probe:

Class I, II, III, Division 1, Groups A, B, C, D, E, F and G; T6...T1; Entity - M1_139080; IP65

Class I, II, III, Division 2, Groups A, B, C, D, E, F and G; T6...T1

Zone 0, Ex ia IIC T6...T1 Ga; Entity - M1_139080; IP65

Zone 20, Ex ia IIIC T80°C Da; Entity - M1_139080; IP65

12. Description of Equipment:

General - The EE300Ex transmitter is designed for gauge measurements of temperature and humidity in air. All signal outputs are available on two 4 to 20 mA analog outputs.

Construction - The EE300Ex transmitter consists of a single compartment electronics housing. The enclosure is of stainless steel and has an integrated or remote humidity and/or temperature sensor.

The EE300Ex transmitter is designed for use with the Product Configuration Adapter (PCA) HA011061 in non-hazardous locations for software configuration.

THIS CERTIFICATE MAY ONLY BE REPRODUCED IN ITS ENTIRETY AND WITHOUT CHANGE

FM Approvals LLC. 1151 Boston-Providence Turnpike, Norwood, MA 02062 USA

T: +1 (1) 781 762 4300 F: +1 (1) 781 762 9375 E-mail: information@fmapprovals.com www.fmapprovals.com

F 348 (Mar 16) Page 2 of 7

Canadian Certificate Of Conformity No: FM17CA0154X

Ratings - The EE300Ex transmitter operates at 6.4-28 Vdc (700mW). The transmitters are rated for use in an ambient temperature range of -40°C to +60°C. The transmitter probe is rated for use in a process temperature range of -70°C to +200°C.

Equipment Group I: EE300Ex without display

EE300EX-HT6SAxaxxxbcCAde

- a = Electrical Connection; B, C, F, G, H, I, V, W, X or Y
- b = Filter; C, D, E, I, J, K, L or M
- c = Sensor Protection; x or 1
- d = Special option; Blank or Gx
- e = Software Code: 11 Digits (Not Safety Relevant)

Entity parameters:

Terminals	Vmax or Ui	Imax or li	Pi	Li	Ci
CH 1: + and -	6.4Vdc ≤ Ui ≤28Vdc	100mA	0.7W	0mH	2.2nF
CH 2: + and -	6.4Vdc ≤ Ui ≤28Vdc	100mA	0.7W	0mH	2.2nF

EE300EX-HT6SaxbcdefgCAhi

- a = Model; E, M, S or U
- b = Electrical Connection; B, C, F, G, H, I, V, W, X or Y c = Probe Cable Length; A, B, C, E, F, G or H d = Probe Length; C, D, F, G, H, J, K or L

- e = Zone Feedthrough (probe fitting): x, A, B, C, F, H or D f = Filter; C, D, E, I, J, K, L or M
- g = Sensor Protection; x or 1
- h = Special option; Blank or Gx
- i = Software Code: 11 Digits (Not Safety Relevant)

Entity parameters:

Terminals	Vmax or Ui	lmax or li	Pi	Li	Ci
CH 1: + and -	6.4Vdc ≤ Ui ≤28Vdc	100mA	0.7W	0mH	2.2nF
CH 2: + and -	6.4Vdc ≤ Ui ≤28Vdc	100mA	0.7W	0mH	2.2nF

Remote probe - Temperature Code:

T-Code	Ambient Temperature
T6	-40°C < Ta < 60°C
T5	-40°C < Ta < 75°C
T4	-40°C < Ta < 110°C
T3	-40°C < Ta < 175°C
T2	-40°C < Ta < 180°C
T1	-40°C < Ta < 180°C

pprovals

THIS CERTIFICATE MAY ONLY BE REPRODUCED IN ITS ENTIRETY AND WITHOUT CHANGE

FM Approvals LLC. 1151 Boston-Providence Turnpike, Norwood, MA 02062 USA T: +1 (1) 781 762 4300 F: +1 (1) 781 762 9375 E-mail: <u>information@fmapprovals.com</u> <u>www.fmapprovals.com</u>

F 348 (Mar 16) Page 3 of 7

Member of the FM Global Group

Canadian Certificate Of Conformity No: FM17CA0154X

EE300EX-xT6SAxaxxxCAb

a = Electrical Connection; B, C, F, G, H, I, V, W, X or Y b = Software Code: 6 Digits (Not Safety Relevant)

Entity parameters:

Entity paramoto	10.				
Terminals	Vmax or Ui	Imax or li	Pi	Li Li	Ci
CH 1: + and -	6.4Vdc ≤ Ui ≤28Vdc	100mA	0.7W	0mH	2.2nF
CH 2: + and -	6.4Vdc ≤ Ui ≤28Vdc	100mA	0.7W	0mH	2.2nF

EE300EX-xT6SaxbcdeCAf

a = Model; H

b = Electrical Connection; B, C, F, G, H, I, V, W, X or Y

c = Probe - Cable Length; A, B, C, E, F, G or H

d = Probe length; E

e = Zone Feedthrough (probe fitting): x, I or J

f = Software Code: 6 Digits (Not Safety Relevant)

Entity parameters:

Terminals	Vmax or Ui	Imax or li	Pi	Li	Ci
CH 1: + and -	6.4Vdc ≤ Ui ≤28Vdc	100mA	0.7W	0mH	2.2nF
CH 2: + and -	6.4Vdc ≤ Ui ≤28Vdc	100mA	0.7W	0mH	2.2nF

Remote probe - Temperature Code:

T-Code	Ambient Temperature
T6	-70°C < Ta < 60°C
T5	-70°C < Ta < 75°C
T4	-70°C < Ta < 110°C
T3	-70°C < Ta < 175°C
T2	-70°C < Ta < 200°C
T1	-70°C < Ta < 200°C

FM Approvals

THIS CERTIFICATE MAY ONLY BE REPRODUCED IN ITS ENTIRETY AND WITHOUT CHANGE

FM Approvals LLC. 1151 Boston-Providence Turnpike, Norwood, MA 02062 USA
T: +1 (1) 781 762 4300 F: +1 (1) 781 762 9375 E-mail: information@fmapprovals.com www.fmapprovals.com

F 348 (Mar 16) Page 4 of 7

Canadian Certificate Of Conformity No: FM17CA0154X

Equipment Group II: EE300Ex with display

EE300EX-HT6SADaxxxbcCAde

a = Electrical Connection; B, C, F, G, H, I, V, W, X or Y

b = Filter; C, D, E, I, J, K, L or M

c = Sensor Protection; x or 1

d = Special option; Blank or Gx

e = Software Code: 11 Digits (Not Safety Relevant)

Entity parameters:

= nexty barameters:							-
	Terminals	Vmax or Ui	Imax or li	Pi	Li	Ci	
	CH 1: + and -	6.4Vdc ≤ Ui ≤28Vdc	100mA	0.7W	0mH	2.2nF	
	CH 2: + and -	6.4Vdc ≤ Ui ≤28Vdc	100mA	0.7W	0mH	2.2nF	

EE300EX-HT6SaDbcdefgCAhi

a = Model; E, M, S or U

b = Electrical Connection; B, C, F, G, H, I, V, W, X or Y

c = Probe - Cable Length; A, B, C, E, F, G or H

d = Probe Length; C, D, F, G, H, J, K or L

 $\label{eq:constraints} \begin{array}{l} e = Zone \; Feedthrough \; (probe \; fitting): \; x, \; A, \; B, \; C, \; F, \; H \; or \; D \\ f = Filter; \; C, \; D, \; E, \; I, \; J, \; K, \; L \; or \; M \end{array}$

g = Sensor Protection; x or 1

h = Special option; Blank or Gx

i = Software Code: 11 Digits (Not Safety Relevant)

Entity parameters:

Ter	rminals	Vmax or Ui	lmax or li	Pi	ī	Ci
CH	1: + and -	6.4Vdc ≤ Ui ≤28Vdc	100mA	0.7W	0mH	2.2nF
CH	2: + and -	6.4Vdc ≤ Ui ≤28Vdc	100mA	0.7W	0mH	2.2nF

Remote probe - Temperature Code:

T-Code	Ambient Temperature
T6	-40°C < Ta < 60°C
T5	-40°C < Ta < 75°C
T4	-40°C < Ta < 110°C
T3	-40°C < Ta < 175°C
T2	-40°C < Ta < 180°C
T1	-40°C < Ta < 180°C

Approvals

THIS CERTIFICATE MAY ONLY BE REPRODUCED IN ITS ENTIRETY AND WITHOUT CHANGE

FM Approvals LLC. 1151 Boston-Providence Turnpike, Norwood, MA 02062 USA T: +1 (1) 781 762 4300 F: +1 (1) 781 762 9375 E-mail: <u>information@fmapprovals.com</u> <u>www.fmapprovals.com</u>

F 348 (Mar 16) Page 5 of 7

Manches after FM Clab at Comm

Canadian Certificate Of Conformity No: FM17CA0154X

EE300EX-xT6SADaxxxCAb

a = Electrical Connection; B, C, F, G, H, I, V, W, X or Y

b = Software Code: 6 Digits (Not Safety Relevant)

Entity parameters:

Entity parameters:					
Terminals	Vmax or Ui	Imax or li	Pi		Ci
CH 1: + and -	6.4Vdc ≤ Ui ≤28Vdc	100mA	0.7W	0mH	2.2nF
CH 2: + and -	6.4Vdc ≤ Ui ≤28Vdc	100mA	0.7W	0mH	2.2nF

EE300EX-xT6SaDbcdeCAf

a = Model; H

b = Electrical Connection; B, C, F, G, H, I, V, W, X or Y

c = Probe - Cable Length; A, B, C, E, F, G or H

d = Probe length; E

e = Zone Feedthrough (probe fitting): x, I or J

f = Software Code: 6 Digits (Not Safety Relevant)

Entity parameters:

Terminals	Vmax or Ui	Imax or li	Pi	Li	Ci
CH 1: + and -	6.4Vdc ≤ Ui ≤28Vdc	100mA	0.7W	0mH	2.2nF
CH 2: + and -	6.4Vdc ≤ Ui ≤28Vdc	100mA	0.7W	0mH	2.2nF

Remote probe - Temperature Code:

T-Code	Ambient Temperature
T6	-70°C < Ta < 60°C
T5	-70°C < Ta < 75°C
T4	-70°C < Ta < 110°C
T3	-70°C < Ta < 175°C
T2	-70°C < Ta < 200°C
T1	-70°C < Ta < 200°C

13. Specific Conditions of Use:

Equipment Group I: EE300Ex without display

- 1. Filter options C, E, J, K and L are not allowed in Groups A or B for Division 1 and EPL Ga IIC for Zone 0.
- 2. The EE300Ex Remote Probe is approved for in air applications only.
- 3. The serial software configuration port of the EE300EX may only be used with the Product Configuration Adapter HA011061.

Equipment Group II: EE300Ex with display

- 1. The EE300Ex Remote Probe is approved for in air applications only.
- 2. The serial software configuration port of the EE300EX may only be used with the Product Configuration Adapter HA011061.

THIS CERTIFICATE MAY ONLY BE REPRODUCED IN ITS ENTIRETY AND WITHOUT CHANGE

FM Approvals LLC. 1151 Boston-Providence Turnpike, Norwood, MA 02062 USA
T: +1 (1) 781 762 4300 F: +1 (1) 781 762 9375 E-mail: information@fmapprovals.com www.fmapprovals.com

F 348 (Mar 16) Page 6 of 7

Canadian Certificate Of Conformity No: FM17CA0154X

14. Test and Assessment Procedure and Conditions:

This Certificate has been issued in accordance with FM Approvals Canadian Certification Scheme.

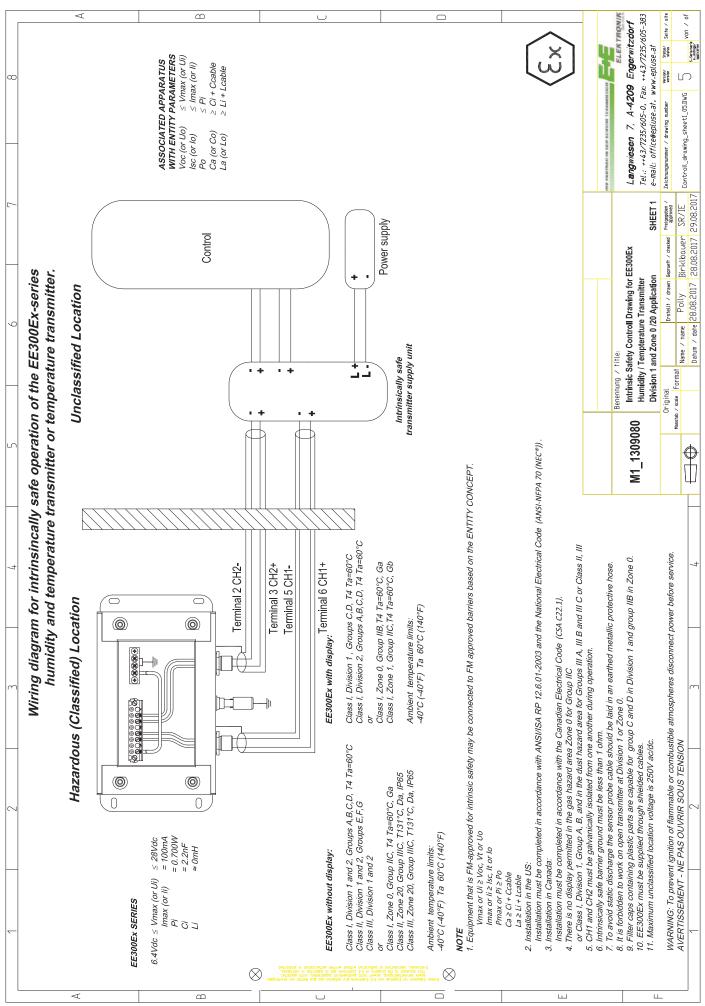
15. Schedule Drawings

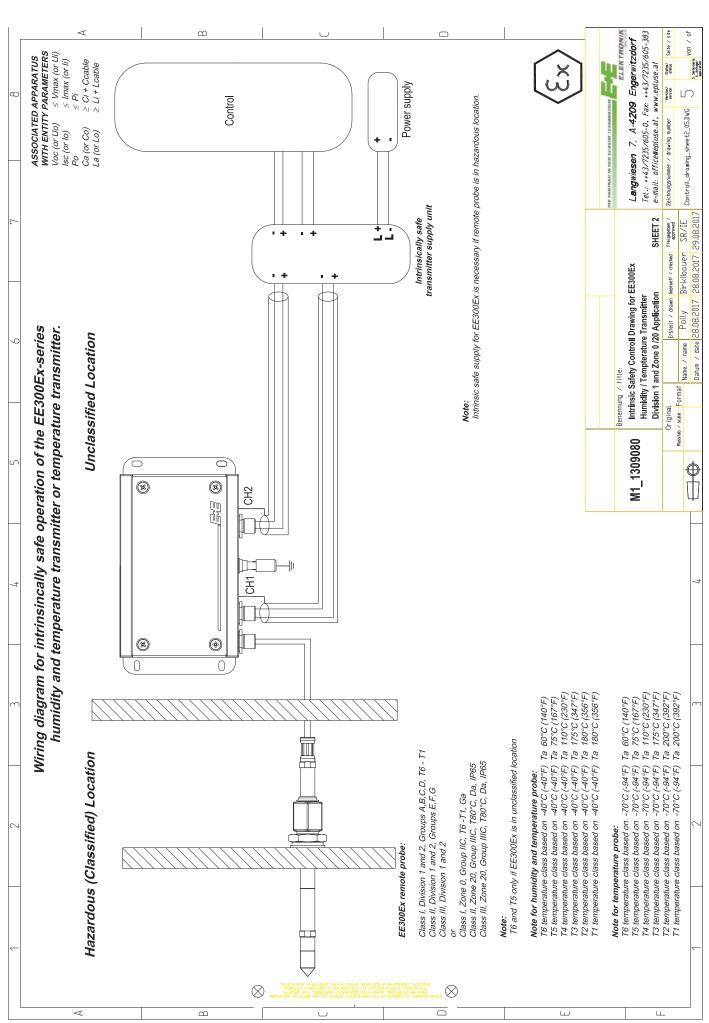
A copy of the technical documentation has been kept by FM Approvals.

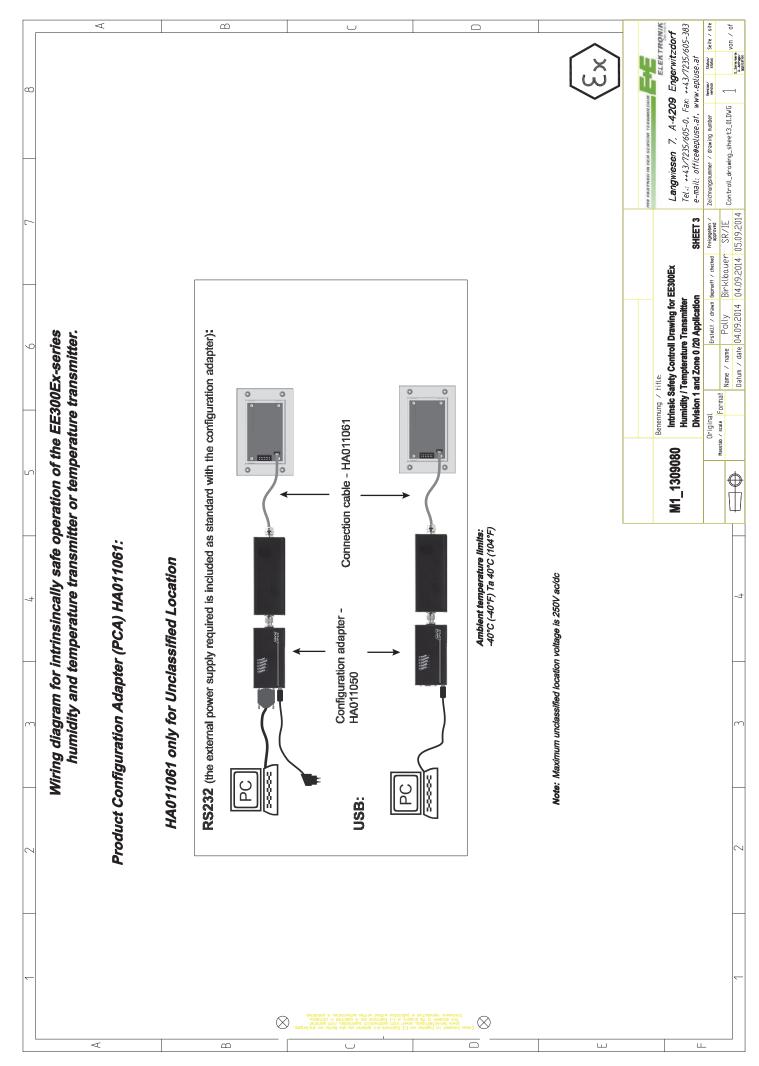
16. Certificate History

Details of the supplements to this certificate are described below:

Date	Description
2 nd October 2017	Original Issue.
30 th November 2017	Supplement 2: Report Reference: – RR211141 dayed 30th November 2017. Description of the Change: Updated standard editions to the latest revisions, added options for electrical connections, added option for probe fitting and converted certificate to new format.


FM Approvals


THIS CERTIFICATE MAY ONLY BE REPRODUCED IN ITS ENTIRETY AND WITHOUT CHANGE


FM Approvals LLC. 1151 Boston-Providence Turnpike, Norwood, MA 02062 USA
T: +1 (1) 781 762 4300 F: +1 (1) 781 762 9375 E-mail: information@fmapprovals.com www.fmapprovals.com

F 348 (Mar 16) Page 7 of 7

14. CONTROL DRAWING M1 1309080

15. CERTIFICATES CHINA, KOREA AND JAPAN

for more information see our website http://www.epluse.com/ee300ex

HEAD OFFICE:

E+E ELEKTRONIK Ges.m.b.H.

Langwiesen 7 A-4209 Engerwitzdorf Austria

Tel: +43 7235 605 0 Fax: +43 7235 605 8 info@epluse.com

www.epluse.com

SALES OFFICES:

E+E CHINA / BEIJING

info@epluse.cn www.epluse.cn

E+E CHINA / SHANGHAI

info@epluse.cn www.epluse.cn

E+E GERMANY

info@epluse.de www.epluse.de

E+E FRANCE

info@epluse.fr www.epluse.fr

E+E ITALY

info@epluse.it www.epluse.it

E+E KOREA

info@epluse.co.kr www.epluse.co.kr

E+E USA

office@epluse.com www.epluse.com